DOI QR코드

DOI QR Code

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So (Imaging Program, Lawson Health Research Institute) ;
  • Savvas Nicolaou (Department of Emergency and Trauma Imaging, Vancouver General Hospital)
  • Received : 2020.02.19
  • Accepted : 2020.04.13
  • Published : 2021.01.01

Abstract

CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.

Keywords

References

  1. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006;16:256-268 
  2. Flohr TG, Bruder H, Stierstorfer K, Petersilka M, Schmidt B, McCollough CH. Image reconstruction and image quality evaluation for a dual source CT scanner. Med Phys 2008;35:5882-5897 
  3. Flohr TG. CT systems. Curr Radiol Rep 2013;1:52-63 
  4. Kyriakou Y, Kalender WA. Intensity distribution and impact of scatter for dual-source CT. Phys Med Biol 2007;52:6969-6989 
  5. Petersilka M, Stierstorfer K, Bruder H, Flohr T. Strategies for scatter correction in dual source CT. Med Phys 2010;37:5971-5992 
  6. Li B, Yadava G, Hsieh J. Quantification of head and body CTDIVOL of dual-energy x-ray CT with fast-kVp switching. Med Phys 2011;38:2595-2601 
  7. Zhang D, Li X, Liu B. Objective characterization of GE Discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 2011;38:1178-1188 
  8. So A, Lee TY, Imai Y, Narayanan S, Hsieh J, Kramer J, et al. Quantitative myocardial perfusion imaging using rapid kVp switch dual-energy CT: preliminary experience. J Cardiovasc Comput Tomogr 2011;5:430-442 
  9. Hsieh J, Gurmen OE, King KF. Investigation of a solid-state detector for advanced computed tomography. IEEE Trans Med Imaging 2000;19:930-940 
  10. Nikl M. Scintillation detectors for x-rays. Meas Sci Technol 2006;17:R37-R54 
  11. Shkumat NA, Siewerdsen JH, Dhanantwari AC, Williams DB, Richard S, Paul NS, et al. Optimization of image acquisition techniques for dual-energy imaging of the chest. Med Phys 2007;34:3904-3915 
  12. Chaytor RJ, Rajbabu K, Jones PA, McKnight L. Determining the composition of urinary tract calculi using stone-targeted dual-energy CT: evaluation of a low-dose scanning protocol in a clinical environment. Br J Radiol 2016;89:20160408 
  13. Chandramohan M. Dual energy composition analysis. Case study. Canon Medical Systems Corporation, 2018. Available at: https://mfl.ssl.cdn.sdlmedia.com/636673921901874788AG.pdf. Accessed January, 2020 
  14. Bornefalk H, Danielsson M. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study. Phys Med Biol 2010;55:1999-2022 
  15. Roessl E, Herrmann C, Kraft E, Proksa R. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout. Med Phys 2011;38:6416-6428 
  16. Hua CH, Shapira N, Merchant TE, Klahr P, Yagil Y. Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med Phys 2018;45:2486-2497 
  17. McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015;276:637-653 
  18. Euler A, Parakh A, Falkowski AL, Manneck S, Dashti D, Krauss B, et al. Initial results of a single-source dual-energy computed tomography technique using a split-filter: assessment of image quality, radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. Invest Radiol 2016;51:491-498 
  19. Almeida IP, Schyns LE, Ollers MC, van Elmpt W, Parodi K, Landry G, et al. Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 2017;44:171-179 
  20. Shikhaliev PM. Energy-resolved computed tomography: first experimental results. Phys Med Biol 2008;53:5595-5613 
  21. Herrmann C, Engel KJ, Wiegert J. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn] Te detection layers. Phys Med Biol 2010; 55:7697-7713 
  22. Persson M, Huber B, Karlsson S, Liu X, Chen H, Xu C, et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol 2014;59:6709-6727 
  23. Muenzel D, Bar-Ness D, Roessl E, Blevis I, Bartels M, Fingerle AA, et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 2017;283:723-728 
  24. Yu Z, Leng S, Jorgensen SM, Li Z, Gutjahr R, Chen B, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 2016;61:1572-1595 
  25. Mijnheer BJ, Guldbakke S, Lewis VE, Broerse JJ. Comparison of the fast-neutron sensitivity of a Geiger-Muller counter using different techniques. Phys Med Biol 1982;27:91-96 
  26. Garcia-Sanchez AJ, Garcia Angosto EA, Moreno Riquelme PA, Serna Berna A, Ramos-Amores D. Ionizing radiation measurement solution in a hospital environment. Sensors (Basel) 2018;18:510 
  27. Yamada H, Suzuki A, Uchida Y, Yoshida M, Yamamoto H, Tsukuda Y. A scintillator Gd2O2 S: Pr, Ce, F for X-ray computed tomography. J Electrochem Soc 1989;136:2713-2716 
  28. Rossner W, Ostertag M, Jermann F. Properties and applications of gadolinium oxysulfide based ceramic scintillators. Electrochem Soc Proc 1999;98:187-194 
  29. Li B. Dual-energy CT with fast-kVp switching and its applications in orthopedics. OMICS J Radiol 2013;2:137 
  30. Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys 2013;40:100901 
  31. Taguchi K, Zhang M, Frey EC, Wang X, Iwanczyk JS, Nygard E, et al. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects. Med Phys 2011;38:1089-1102 
  32. Persson M, Bujila R, Nowik P, Andersson H, Kull L, Andersson J, et al. Upper limits of the photon fluence rate on CT detectors: case study on a commercial scanner. Med Phys 2016;43:4398-4411 
  33. Shikhaliev PM, Fritz SG, Chapman JW. Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance. Med Phys 2009;36:5107-5119 
  34. Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci 2011;58:614-625 
  35. Szeles C, Soldner SA, Vydrin S, Graves J, Bale DS. CdZnTe semiconductor detectors for spectroscopic x-ray imaging. IEEE Trans Nucl Sci 2008;55:572-582 
  36. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 1976;21:733-744 
  37. Lehmann LA, Alvarez RE, Macovski A, Brody WR, Pelc NJ, Riederer SJ, et al. Generalized image combinations in dual KVP digital radiography. Med Phys 1981;8:659-667 
  38. Hubbell JH, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg: National Institute of Standards and Technology, 1996 
  39. Hsieh J. Advanced CT applications. In: Hsieh J, ed. Computed tomography principles, design, artifacts and recent advances, 2nd ed. Hoboken: Wiley, 2009:469-543 
  40. Wu X, Langan DA, Xu D, Benson TM, Pack JD, Schmitz AM, et al. Monochromatic CT image representation via fast switching dual kVp. SPIE Medical Imaging;2009 March 13;Lake Buena Vista, USA 
  41. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012;199:S9-S15 
  42. Brooks RA, Di Chiro G. Beam hardening in x-ray reconstructive tomography. Phys Med Biol 1976;21:390-398 
  43. So A, Hsieh J, Imai Y, Narayanan S, Kramer J, Procknow K, et al. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging 2012;5:829-836 
  44. Cormode DP, Roessl E, Thran A, Skajaa T, Gordon RE, Schlomka JP, et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010;256:774-782 
  45. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 2008;53:4031-4047 
  46. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 
  47. Liu X, Yu L, Primak AN, McCollough CH. Quantitative imaging of element composition and mass fraction using dual-energy CT: three-material decomposition. Med Phys 2009;36:1602-1609 
  48. Mendonca PR, Lamb P, Sahani DV. A flexible method for multi-material decomposition of dual-energy CT images. IEEE Trans Med Imaging 2014;33:99-116 
  49. Hsieh J. Advanced CT applications. In: Hsieh J, ed. Computed tomography principles, design, artifacts and recent advances, 3rd ed. Bellingham: SPIE Press Book, 2015:529-623 
  50. van Elmpt W, Landry G, Das M, Verhaegen F. Dual energy CT in radiotherapy: current applications and future outlook. Radiother Oncol 2016;119:137-144 
  51. Grimes DR, Warren DR, Partridge M. An approximate analytical solution of the Bethe equation for charged particles in the radiotherapeutic energy range. Sci Rep 2017;7:9781 
  52. Torikoshi M, Tsunoo T, Sasaki M, Endo M, Noda Y, Ohno Y, et al. Electron density measurement with dual-energy x-ray CT using synchrotron radiation. Phys Med Biol 2003;48:673-685 
  53. Goodsitt MM, Christodoulou EG, Larson SC. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys 2011;38:2222-2232 
  54. Saito M. Potential of dual-energy subtraction for converting CT numbers to electron density based on a single linear relationship. Med Phys 2012;39:2021-2030 
  55. Matsufuji N, Tomura H, Futami Y, Yamashita H, Higashi A, Minohara S, et al. Relationship between CT number and electron density, scatter angle and nuclear reaction for hadron-therapy treatment planning. Phys Med Biol 1998;43:3261-3275 
  56. Mustafa AA, Jackson DF. The relation between X-ray CT numbers and charged particle stopping powers and its significance for radiotherapy treatment planning. Phys Med Biol 1983;28:169-176 
  57. Hunemohr N, Krauss B, Tremmel C, Ackermann B, Jakel O, Greilich S. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates. Phys Med Biol 2014;59:83-96