• Title/Summary/Keyword: Dual-cooled annular fuel

Search Result 9, Processing Time 0.026 seconds

Design and evaluation of an innovative LWR fuel combined dual-cooled annular geometry and SiC cladding materials

  • Deng, Yangbin;Liu, Minghao;Qiu, Bowen;Yin, Yuan;Gong, Xing;Huang, Xi;Pang, Bo;Li, Yongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.178-187
    • /
    • 2021
  • Dual-cooled annular fuel allows a significant increase in power density while maintaining or improving safety margins. However, the dual-cooled design brings much higher Zircaloy charge in reactor core, which could cause a great threaten of hydrogen explosion during severe accidents. Hence, an innovative fuel combined dual-cooled annular geometry and SiC cladding was proposed for the first time in this study. Capabilities of fuel design and behavior simulation were developed for this new fuel by the upgrade of FROBA-ANNULAR code. Considering characteristics of both SiC cladding and dual-cooled annular geometry, the basic fuel design was proposed and preliminary proved to be feasible. After that, a design optimization study was conducted, and the optimal values of as-fabricated plenum pressure and gas gap sizes were obtained. Finally, the performance simulation of the new fuel was carried out with the full consideration of realistic operation conditions. Results indicate that in addition to possessing advantages of both dual-cooled annular fuel and accident tolerant cladding at the same time, this innovative fuel could overcome the brittle failure issue of SiC induced by pellet-cladding interaction.

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

Examination of Forced Convection Heat Transfer Performance of a Twist-Vane Spacer Grid for a Dual-Cooled Annular Fuel Assembly (이중냉각 환형핵연료 집합체를 위한 비틀림 혼합날개 지지격자의 강제대류열전달 성능 검토)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • The forced convection heat transfer performance of a twist-vane spacer grid for a dual-cooled annular fuel assembly was examined experimentally. The twist-vane spacer grid was uniquely designed to enhance mixing inside subchannels and mixing between adjacent subchannels. For testing, a $4{\times}4$ square-arrayed rod bundle with narrow gaps between rods was prepared as the dual-cooled annular fuel assembly to be simulated. The pitch-to-rod diameter ratio of simulated dual-cooled annular fuel assembly was 1.08. The experiments were performed under the following conditions: axial bulk velocity, 1.5 m/s and heat flux, $26kW/m^2$. With regard to the circumferential temperature distribution, the lowest rod-wall temperatures upstream and downstream were measured at the subchannel center and the position toward the tip of twist-vane, respectively. With regard to the axial temperature distribution, behind the twist-vane spacer grid, the rod-wall temperature decreased drastically, and the Nusselt number was enhanced by up to 56 %. The present measured data indicate that the twist-vane spacer grid can effectively improve the forced convection heat transfer in the dual-cooled annular fuel assembly with narrow gaps.

CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR (가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석)

  • In, W.K.;Shin, C.B.;Park, J.Y.;Oh, D.S.;Lee, C.Y.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

Pressure Drop and Flow-Induced Vibration Test for the HANARO Non-instrumented Irradiation Test Rig of Annular Fuel Pellet (환형소결체 하나로 조사시험용 무계장 리그의 차압 및 유동유발 진동시험)

  • Lee, Kang-Hee;Kim, Dae-Ho;Bang, Jae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.281-286
    • /
    • 2007
  • Needs of fuel's performance evaluation for the dual-cooled fuel pellet (annular shape) necessitate the irradiation test in the test reactor. Irradiation test rig for the HARARO reactor, which is a special-purposed equipment used for material, irradiation and creep test, must satisfy the operational requirement on the hydraulic characteristics and structural integrity. In this paper, pressure drop and flow-induced vibration test for the newly developed non-instrumented test rig were carried out using FIVPET as a out-pile evaluation test. The test results show that the new test rig satisfy the HANARO operational requirement with sufficient margin. The spectral response characteristics of the flow-induced vibration of the test rid were also discussed.

  • PDF

Mechanical Performance Evaluation of a Top End Piece for Dual Cooled Fuels (이중냉각 핵연료 상단고정체의 기계적 성능평가)

  • Kim, Jae-Yong;Yoon, Kyung-Ho;Kim, Hyung-Kyu;Choi, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.417-424
    • /
    • 2011
  • A fuel assembly consists of five major components, i.e., a top end piece (TEP), a bottom end piece (BEP), spacer grids (SGs), guide tubes (GTs) and an instrumentation tube (IT); in addition, it also includes fuel rods (FRs). The TEP/BEP should satisfy stress intensity limits according to the conditions A and B of ASME, Section III, Division 1-Subsection NB. In a dual-cooled fuel assembly, the array and position of fuel rods are different from those in a conventional PWR fuel assembly; these changes are necessary for achieving power uprating. The flow plates of the TEP and BEP have to be modified accordingly. The pattern and shape of the flow holes were newly designed. To verify the strength compatibility, the Tresca stress limit according to the ASME code was investigated in the case of an axial load of 22.241 kN. In this paper, the stress linearization procedure for strength evaluation of a newly designed TEP is presented.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.