• Title/Summary/Keyword: Dual-Fuel

Search Result 282, Processing Time 0.027 seconds

The Dual Design of Fuel Cell Hybrid Power System using Dual Converter PCS (1.5kW 연료전지 복합발전 시스템의 듀얼 컨버터 설계)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Hong, Suk-Jin;Kim, Hak-Sung;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, parallel input/serial output dual converter is designed appropriately for fuel cell hybrid power system. In case of proposed converter, zero voltage switching condition is designed without additional resonance device using leakage inductance of transformer and output capacitance of switch, and zero voltage switching method is used. Also, the system method is for increasing power by connecting half-bridge in parallel and increasing output voltage by connecting secondary output of transformer in serial. Through this method we can increase power and decrease volume of system. So in this paper, dual converter is designed. 1.5kW fuel cell hybrid power system was implemented, and system operation and stability was verified through experiment.

Research of Natural Gas/Diesel Dual Fuel Vehicle (CRDI시스템을 갖는 천연가스/디젤 혼소차량의 개발에 대한 연구)

  • Lee, Sang-Min;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.13-18
    • /
    • 2012
  • This research is about the exhaust gas and driving performance test which are for CNG-Diesel dual fuel engine. The CNG-Diesel dual fuel engine converted from 2500cc diesel has two steps of injection systems; small amount of diesel is injected to mixture CNG in cylinder to ignite before CNG is injected into each intake manifold to form mixture. The amounts of output power and emission in duel fuel consumption were measured by engine dynamometer and exhaust gas analyzer. Over 90% of diesel consumption reduction, similar driving performance to current diesel engine and reduced emission on $CO_2$ and PM, respectively, were indicated through the measurements. The two steps of system were applied to vehicle to investigate exhaust gas characteristics and driving performance via NEDC mode and real driving test. Additional oxidation catalyst was applied to reduce emission on the test vehicle and the NEDC mode test showed the reduction of Co, $CO_2$, Pm and THC.

Modeling the Dual-Fuel Combustion of Natural Gas and Pilot Distillate Injected Directly into a Diesel Combustion Bomb (디젤연소용기에 직접분사된 천연가스와 파일럿오일의 복합연소 모델링)

  • 최인수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.155-164
    • /
    • 1996
  • Dual-fuel engines are being researched with emphasis on the possible types of natural gas supply systems. Hence, a three-dimensional combustion model by using finite volume method was developed to provide a fundamental understanding of the auto-ignition of pilot distillate and subsequent burning of natural gas, when the natural gas as well as the distillate was directly injected into a quiescent diesel engine like combustion bomb tests and the numerical results were investigated for the mixed combustion phenomena. With high-pressure natural gas injection, it was found that the gaseous fuel injection characteristics had to be well harmonised with that of the pilot distillate. For better combustion efficiency, however, further researches are required for the optimisation of injection system in the existence of air motion.

  • PDF

Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine (포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구)

  • Lee, Ziyoung;Choi, Jonghui;Jang, Jihwan;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

A Study on the Performance and Particulate Emission Characteristics for the Hydrogen-Premixed Diesel Engine (수소 혼소 디젤 기관의 성능 및 미립자상 물질의 배출 특성에 관한 연구)

  • 채재우;한동성;이상만;전영남;정영식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.34-41
    • /
    • 1993
  • In order to reduce harmful substances such as particulates and nitric oxides emitted from diesel engine, man kinds of methodology like high pressure spray of diesel fuel oil, exhaust gas recirculation, emulsified fuel usage and dual fuelling have been studied. Dual fuelling of a diesel engine with hydrogen which is well-known as the clean fuel and has excellent combustibility is expected to be effective in reducing harmful substances from diesel engine. This experimental study was conducted to investigate the effect of premixed hydrogen with intake air on the performance and particulate emission characteristics using a single cylinder, prechamber type diesel engine. As a result, it was clarified that a hydrogen-premixed diesel engine can be operated in the state of lower particulate emission and slightly aggravated fuel economy, compared with the conventional diesel engine.

  • PDF

The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask (국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가)

  • Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.411-422
    • /
    • 2016
  • Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R&D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0~4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

Dynamic Stability Analysis of Annular Cylindrical Fuel Rod in Axial Flow (축류에 놓인 환형 실린더 연료봉의 동적 안정성 기초해석)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Lee, Young-Ho;Kim, Jae-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.264-267
    • /
    • 2008
  • Dual-cooled fuel with inner and outer flow channel was proposed for high burup, next generation nuclear fuel design. The annular cylinder of dual cooled fuel has higher structural strength compared to the conventional one, but also have concerns about flow induced vibration due to an additional flow of inner channel and the difference of flow velocity in between inner and outer channel. In this study, the dynamic stability of flexible, annular cylinder was evaluated according to the flow variation and compared to the that of the conventional PWR fuel rod. Centrifugal and Coriolis force by the additional flow in the inner channel were added in the dynamic equation of flexible beam in uniform, external, and axial flow. Complex eigenfrequency was calculated by the finite element method. Stability margin of annular cylinder compared to the solid cylinder and change of the dynamic characteristic are presented and discussed as a analysis results.

  • PDF

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Chung-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Economic Feasibility Assessment and Analysis of Dual Fuel Systems Utilizing Diesel and Compressed Natural Gas (경유와 압축천연가스의 혼소 시스템에 대한 경제적 타당성 평가 분석)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.166-174
    • /
    • 2018
  • Since particulate matter has high impacts on human health and everyday life, the dual fuel systems utilizing diesel and compressed natural gas have been developed to improve the environmental performance of diesel vehicles. The objective of this study is to estimate the economic feasibility of the dual fuel system based on real operating data of dual fuel buses and diesel buses. The system is economically feasible if the annual mileage of the dual bus is higher than 30,000 km, or if the unit fuel price of diesel is higher than that of CNG by 408 won. The uncertainty analysis results show that the economic feasibility of the system is probabilistically high, regardless of the variability of input data such as mileage and unit prices for the fuels. The sensitivity analysis results show that diesel and CNG prices are the highest contributor to the net present value of the system. Based on these results, economic incentives are suggested to disseminate the systems. This study would provide valuable economic information for bus business industry and policy maker to help make decisions for applying and disseminating the dual fuel systems to mitigate particulate matter problems.

Enthalpy Rise for Pressure Loss of Spacer Grids of Dual Coolant Fuel (이중냉각연료에서 지지격자의 압력손실에 대한 엔탈피 증가)

  • Chun, Kun-Ho;Chun, Tae-Hyun;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3473-3478
    • /
    • 2007
  • A dual side cooling annular fuel having internal and external coolant channels has many advantages basically due to low fuel temperature and high DNBR margin, which can make a significant increase of core power density possible. So recently a 12x12 square annular fuel array was proposed for the fuel assembly to be reloaded without structural interference with operating reactors of OPR-1000s. Even through the inherent potential of the annular fuel on the high power density, it may be seriously eroded in the case of a severe unbalanced mass flux split to the internal and external channels in standpoint of DNB. Mass flux split is determined pressure drop characteristics between inner and outer channels. The spacer grids binding fuel array influence greatly the pressure drop in outer channels and the mass flux split. As an important factor of DNB behavior, the enthalpy differences at both channel exits were evaluated using the mass flux splits.

  • PDF