• Title/Summary/Keyword: Dual sensor

Search Result 285, Processing Time 0.024 seconds

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.

Simultaneous Measurement of Strain and Damage Signal of Composite Structures Using a Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정)

  • Koh Jong-In;Bang Hyung-Joon;Kim Chun-Gon;Hong Chang-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • For the simultaneous measurement of strain and damage signal, a fiber Bragg grating sensor system with a dual demodulator was proposed. One demodulator using a tunable Fabry-Perot filter can measure low-frequency signal such as strain and the other demodulator using a passive Mach-Zehnder interferometer can detect high-frequency signal such as damage signal or impact signal. Using a proposed fiber Bragg grating sensor system, both the strain and damage signal of a cross-ply laminated composite beam under tensile loading were simultaneously measured. Analysis of the strain and damage signals detected by single fiber Bragg grating sensor showed that sudden strain shifts were induced due to transverse crack propagation in the 90 degree layer of composite beam and vibration with a maximum frequency of several hundreds of kilohertz was generated.

  • PDF

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT (ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템)

  • Son, Jae Deok;Lim, Sooho;Kim, Dong-In;Han, Giyoun;Ilyasov, Rustem;Yunusbaev, Ural;Kwon, Hyung Wook
    • Journal of Apiculture
    • /
    • v.34 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

Fuzzy Controller Development for Efficiency Improvement of Photovoltaic Tracking System using Sensor (센서방식 태양광 추적 시스템의 효율 향상을 위한 퍼지제어기 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Jung, Byung-Jin;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.217-218
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy based on PC in order to increase an output of the PV array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module (2 자유도 자동손목관절을 가진 근전 전동의수 개발)

  • Park, Se-Hoon;Hong, Beom-Ki;Kim, Jong-Kwon;Hong, Eyong-Pyo;Mun, Mu-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.824-832
    • /
    • 2011
  • An essential consideration to differentiate prosthetic hand from robot hand is its convenience and usefulness rather than high resolution or multi-function of the robot hand. Therefore, this study proposes a myoelectric hand with a 2 DOF auto wrist module which has 6 essential functions of the human hand such as open, grasp, pronation, supination, extension, flexion, which improves the convenience of the daily life. It consists of the 3 main parts, the myoelectric sensor for input signal without additional attachment to operate the prosthetic hand, hand mechanism with high-torqued auto-transmission mechanism and self-locking module which guarantee the safety under the abrupt emergency and minimum power consumption, and dual threshold based controller to make easy for adopting the multi-DOF myoelectric hand. We prove the validity of the proposed system with experimental results.

Study on the Fabrication and Evaluation of the MEMS Based Curved Beam Air Flowmeter for the Vehicle Applications (MEMS 기반의 차량용 휨형 유속센서의 제작 및 특성 연구)

  • Park, Cheol Min;Choi, Dae Keun;Lee, Sang Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • This paper presents the fabrication and evaluation of the novel drag force type air flowmeter using MEMS technologies for the vehicle applications. To obtain the air drag force, the flowmeter utilized the curved beam structure, which was realized by the difference of residual stress between the silicon oxide layer and the silicon nitride layer. The paddle structure was applied for the maximum air drag force, and the dual-beam was adapted to prevent distortion. The basic experiments were performed in the wind tunnel, and the stable outputs were obtained. The device was applied to the internal combustion engine, and the results were compared with the HI-DS output where the convection thermal flowmeter was used as the reference sensor. The results indicated that the comparable resolutions and response times were obtained under the various engine speeds.

Fabrication and Characteristics of Surface-Acoustic-Wave Sensors for Detecting $NO_2$ GaS ($NO_2$ 가스 감지를 위한 표면탄성파 센서의 제작 및 특성)

  • Choi, D.H.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 1999
  • Surface acoustic wave (SAW) device is very attractive for gas sensor applications because of their small size, low cost, high sensitivity, and good reliability. A dual delay line surface acoustic wave $NO_2$ gas sensors have been designed and fabricated on the $LiTaO_3$ piezoelectric single crystal substrate. The capacitance of the fabricated IDTs was 326.34pF at the frequency of 79.3MHz. The maximum reflection loss of the impedence-matched IDTs was -16.74dB at the frequency of 79.3MHz. The SAW oscillator was constructed and the stable oscillation was obtained by controlling the gain of rf amplifier properly. The oscillation frequency shift of the SAW oscillator to the $NO_2$ gas was 28Hz/ppm.

  • PDF

Fabrication of MISFET type hydrogen sensor for high Performance (고성능 MISFET형 수소센서의 제작과 특성)

  • Kang, K.H.;Park, K.Y.;Han, S.D.;Choi, S.Y.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.317-323
    • /
    • 2004
  • We fabricated a MISFET using Pd/NiCr gate for the detecting of hydrogen gas in the air and investigated its electrical characteristics. To improve stability and high concenntration sensitivity and remove the blister generated by the penetration of hydrogen atoms Pd/NiCr catalyst gate metal are used as dual gate. To reduce the gate drift voltage caused by the inflow of hydrogen, the gate insulators of sensing and reference FFET were constructed with double insulation layers of silicon dioxide and silicon nitride. The hydrogen response of MISFET were amplified with the difference of gate voltages of both MISFET. To minimize the drift and the noise, we used a OP177 operational amplifier. The sensitivity of the Pd/NiCr gate MISFET was lower than that of Pd/Pt gate MISFET, but it showed good stability and ability to detect high concentration hydrogen up to 1000ppm.

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.

Design and Fabrication of A Doppler Radar for Motion Detector Using Frequency Tunable Hairpin Resonator (주파수 가변형 헤어핀공진기를 이용한 동작감지용 도플러 레이더센서의 제작 및 설계)

  • Kim, Eun-Su;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.931-936
    • /
    • 2018
  • We designed an x-band radar for motion detector using a frequency tunable hairpin ring resonator. The proposed doppler radar sensor can vary the oscillation frequency by applying a hairpin resonator using a varactor diode to the oscillator, and this can also reduce the size by transmitting and receiving a signal from Tx/Rx dual antenna. The fabricated doppler radar sensor was fabricated in $30{\times}24mm$, and it was confirmed that the pulse width difference occurred according to the distance from the object. The measurement results showed oscillation at 10.525GHz. We confirmed that it is enough to use as radar for motion detection from the measured results.