• Title/Summary/Keyword: Dual mode hybrid

Search Result 43, Processing Time 0.032 seconds

Analysis of dual-mode hybrid by using mode change parameter (모드 전환 상수를 이용한 듀얼 모드 하이브리드 해석 방법)

  • Kim, Nam-Wook;Yang, Ho-Rim;Ahn, Kuk-Hyun;Cho, Sung-Tae;Park, Yoeng-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.539-542
    • /
    • 2006
  • Many researches about next generation vehicles are trending toward HEV which has better fuel economy than an internal-combustion engine. But existing HEV has some defects at specific running states(eg. highway running It is possible that dual-mode hybrid system overcomes that defects. Mode change parameter, ${\gamma}$ helps to analyse the mode changing of dual mode hybrid and is applied at a numerical analysis on testing the performance. There is an additional constraint when vehicles drive on engine mode. No power assistance of battery applies on engine mode. Because vehicles must be sustained by only engine power while vehicle drives on constant speed mode. At the conclusion of this paper, graphs show the ability of motors that satisfy the equilibrium of the lever system. Designers can roughly determine capacities of the motors, parameters of the lever system by this analysing method.

  • PDF

Accelerating Ability Optimization for Dual Mode Hybrid Vehicle Using Complex Planetary Gears (복합 유성기어를 이용한 듀얼모드 하이브리드 자동차의 가속성능 최적화)

  • Yang, Si-U;Kim, Nam-Wook;Yang, Ho-Rim;Park, Yoeng-Il;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.97-100
    • /
    • 2006
  • Accelerating ability is one of the most important performance of the vehicle. Unlike conventional internal combustion vehicles and power-assist hybrid vehicles, the maximized acceleration of dual mode hybrid vehicles is not simply. achieved by maximizing engine or motor torque Because of the dynamic stability of planetary gear, speeds and torques control of engine, motor 1 and motor 2 is essential and according to control value, acceleration performance is changed There are two control values which are velocity and torque for each component totalling six. These six values can be variables for an objective function. However, because three velocity variables can be regarded as only one variable speed ratio and the remaining three torque variables can be solved analytically, without complicated numerical algorithm the solution for the objective function can be obtained. This optimized solution shows the best performance possible to the specified dual mode system.

  • PDF

ANALYSIS OF PLANETARY GEAR HYBRID POWERTRAIN SYSTEM PART 1: INPUT SPLIT SYSTEM

  • Yang, H.;Cho, S.;Kim, N.;Lim, W.;Cha, S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.771-780
    • /
    • 2007
  • In recent studies, various types of multi mode electric variable transmissions of hybrid electric vehicles have been proposed. Multi mode electric variable transmission consists of two or more different types of planetary gear hybrid powertrain system(PGHP), which can change its power flow type by means of clutches for improving transmission efficiencies. Generally, the power flows can be classified into three different types such as input split, output split and compound split. In this study, we analyzed power transmission characteristics of the possible six input split systems, and found the suitable system for single or multi mode hybrid powertrain. The input split system used in PRIUS is identified as a best system for single mode, and moreover we identified some suitable systems for dual mode.

Handoff Management for Mobile Devices in Hybrid Wireless Data Networks

  • Inayat Riaz;Aibara Reiji;Nishimura Kouji
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.76-86
    • /
    • 2005
  • Today's wireless access networks consist of several tiers that overlap each other. Provisioning of real time undisrupted communication to mobile users, anywhere and anytime through these heterogeneous overlay networks, is a challenging task. We extend the end-to-end approach for the handoff management in hybrid wireless data network by designing a fully mobile-controlled handoff for mobile devices equipped with dual mode interfaces. By handoff, we mean switching the communication between interfaces connected to different subnets. This mobile-controlled handoff scheme reduces the service disruption time during both horizontal and vertical handoffs and does not require any modification in the access networks. We exploit the IP diversity created by the dual interfaces in the overlapping area by simultaneously connecting to different subnets and networks. Power saving is achieved by activating both interfaces only during the handoff period. The performance evaluation of the handoff is carried out by a simple mathematical analysis. The analysis shows that with proper network engineering, exploiting the speed of mobile node and overlapping area between subnets can reduce service disruption and power consumption during handoff significantly. We believe that with more powerful network interfaces our proposal of dual interfaces can be realized.

Performance Test of the Dual Mode Hybrid Systems (듀얼 모드 하이브리드 시스템의 성능 평가)

  • Kim, Nam-Wook;Yang, Si-U;Yang, Ho-Rim;Cho, Sung-Tae;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.87-93
    • /
    • 2007
  • It is complicate to analysis the systems, dual mode hybrid systems, because they are composed of many planetary gear sets. For the performance test, it needs to define the systems with representative parameters. In this paper, system parameters, $\alpha$, $\beta$, $\zeta$, are introduced to define the systems, and an arbitrary system like E-IVT developed by Renault Motors is converted to the general system having equivalent parameters, such as $\beta'$, $R'_b$. Pontryagin principle and Kuhn-Tucker condition method are applied to solve the constrained problems, by which the methodology for accelerating test is generalized, and the results of the simulation are reported. In addition, the effects of alternative strategies are mentioned. The method of fuel economy test at engine mode is also introduced. The results of test at engine mode is different from the results of optimal trajectory, but the fuel economy of the engine mode is related to the highway driving and optimized operating of the system.

Comparison Study on Power Output Characteristics of Power Management Methods for a Hybrid-electric UAV with Solar Cell/Fuel Cell/Battery

  • Lee, Bohwa;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.631-640
    • /
    • 2016
  • A dual-mode power management for a hybrid-electric UAV with a cruise power of 200W is proposed and empirically verified. The subject vehicle is a low-speed long-endurance UAV powered by a solar cell, a fuel cell, and a battery pack, which operate in the same voltage bounds. These power sources of different operational characteristics can be managed in two different methods: passive management and active management. This study proposes a new power management system named PMS2, which employs a bypass circuit to control the individual power sources. The PMS2 normally operates in active mode, and the bypass circuit converts the system into passive mode when necessary. The output characteristics of the hybrid system with the PMS2 are investigated under simulated failures in the power sources and the conversion of the power management methods. The investigation also provides quantitative comparisons of efficiencies of the system under the two distinct power management modes. In the case of the solar cell, the efficiency difference between the active and the passive management is shown to be 0.34% when the SOC of the battery is between 25-65%. However, if the SOC is out of this given range, i.e. when the SOC is at 90%, using active management displays an improved efficiency of 6.9%. In the case of the fuel cell, the efficiency of 55% is shown for both active and passive managements, indicating negligible differences.

Dual Mode-AODV for the Hybrid Wireless Mesh Network (하이브리드 무선 메시 네트워크를 위한 듀얼모드-AODV)

  • Kim, Hocheal
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • With the Development of Wireless Network Technology and Wireless Link Technology, Wireless Mesh Network (WMN) is Attracting Attention as a Key Technology to Construct the Wireless Transit Network. The WMN has been Studied for a Long Time in Various Fields, however there are still many Problems that have not been solved yet. One of them is the Routing Problem to find an Optimal path in a Multi-hop Network Composed of Wireless Links. In the Hybrid-WMN, which is one of the Three Types of WMN, Optimal Path Selection Requires Research on Path Search Protocols that Effectively use the Infrastructure Mesh as a Transit Network, Together with Research for a Routing Metric with Excellent Performance. Therefore, this Paper Proposes a Dual Mode-AODV(Ad hoc On-demand Distance Vector) for Hybrid-WMN. Simulation result shows that the Path Selection Delay was Reduced by 52% than AODV when the Proposed Dual Mode-AODV was applied.

Resource Allocation based on Hybrid Sharing Mode for Heterogeneous Services of Cognitive Radio OFDM Systems

  • Lei, Qun;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.149-168
    • /
    • 2015
  • In cognitive radio networks (CRNs), hybrid overlay and underlay sharing transmission mode is an effective technique for improving the efficiency of radio spectrum. Unlike existing works in the literature, where only one secondary user (SU) uses overlay and underlay modes, the different transmission modes should be allocated to different SUs, according to their different quality of services (QoS), to achieve the maximal efficiency of radio spectrum. However, hybrid sharing mode allocation for heterogeneous services is still a challenge in CRNs. In this paper, we propose a new resource allocation method for hybrid sharing transmission mode of overlay and underlay (HySOU), to achieve more potential resources for SUs to access the spectrum without interfering with the primary users. We formulate the HySOU resource allocation as a mixed-integer programming problem to optimize the total system throughput, satisfying heterogeneous QoS. To decrease the algorithm complexity, we divide the problem into two sub-problems: subchannel allocation and power allocation. Cutset is used to achieve the optimal subchannel allocation, and the optimal power allocation is obtained by Lagrangian dual function decomposition and subgradient algorithm. Simulation results show that the proposed algorithm further improves spectrum utilization with a simultaneous fairness guarantee, and the achieved HySOU diversity gain is a satisfactory improvement.

Performance Evaluation of a High-Speed LAN using a Dual Mode Switching Access Protocol (이중 모드 스윗칭 억세스 프로토콜을 이용한 고속 근거리 통신망의 성능평가)

  • 주기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2620-2633
    • /
    • 1996
  • In this paper, a new high-speed local area network using a dual mode switching access (DMSA) protocol implemented on a dual unidirectional bus is described. By utilizing the implicit positionalordering of stations on a unidirectional bus, the proposed system switches between random access mode and the token access model withoug unnecessary delay. Therefore, unlike other hybrid systems such as Buzz-net and Z-net, DMSA does not show a rapid degradation in performance as the load increases. We obtain the average channel utilization and the average access delay by using a simplified analytic model. The numerical results obtained via analysis are compared to the simulation resuls for a partial validation of the approximate model. The performance characteristics of DMSA are superior delay-throughput characteristics at light and medium loads, compared to compared to other LAN systems, and the capability of providing a single active station with full capabity of the channel.

  • PDF

A Stop-and-Go Dual-Mode Modified Constant Modulus Algorithm for Adaptive Blind Equalization of High-Order QAM Signals (고밀도 광 기록 채널을 위한 터보 코드와 터보 등화기를 연접한 데이터 복호 방법)

  • 임창현;김기윤;김동규;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1074-1081
    • /
    • 2000
  • In this paper, in order to speed up the convergence process and improve the steady mean square error simultaneously, we propose the Stop-and-Go Dual Mode Modified Constant Modulus Algorithm(SAG DM MCMA) for adaptive blind channel equalization of high order QAM. The proposed algorithm is a hybrid scheme of the Modified CMA that treat error signals with real and imaginary components of the equalizer output, the concept of dual mode CMA, and Stop-and-Go algorithm. As a result it can prevent blind equalization from converging to incorrect direction and simultaneously operates reliably for tap weight adaptation. We demonstrate via simulation that the proposed algorithm achieves lower steady state mean square error and residual ISI than the conventional algorithms under high order QAM signals and severe channel environment.

  • PDF