• Title/Summary/Keyword: Dual impedance transmission line

Search Result 27, Processing Time 0.027 seconds

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.

Design of Bandpass Filters using Microstrip Line PBG (마이크로스트립 PBG를 이용한 대역통과 여파기 설계)

  • Lee, Chang-On;Kim, Sang-Tae;Shin, Chull-Chai
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.361-365
    • /
    • 2003
  • In this paper, we proposed the effective serial connection methodology of PBG resonator with defect mode. We use the big difference of impedance ratio in connection region, for example dual PBG, for serial connection. This method reduces the PBG cells and is able to control the pole of bandpass filters. This result in flexibility in design of bandpass filter. Our PBG bandpass filter is modeled by using the ideal transmission line model. This model is very easy, fast, and effective for PBG structure.

  • PDF

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.

Miniaturized Microstrip Dual Band-Stop Filter Using Stepped Impedance Resonators (계단형 임피던스 공진기를 이용한 소형화된 마이크로스트립 이중 대역 저지 필터)

  • Kim, Gi-Rae;Park, Young-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1653-1658
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

Variable Dual Band Stop Filter Using 3-Stepped Impedance Resonators (3단 계단형 임피던스 공진기를 이용한 가변 이중 대역 저지 필터)

  • Kim, Gi-Rae;Kim, Yo-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • A novel circuit structure of dual-band bandstop filters is proposed in this paper. This structure comprises two shunt-connected tri-section stepped impedance resonators with a transmission line in between. Theoretical analysis from the equivalent circuit and design procedures are described. We represented graphs for filter design from the derived synthesis equations by resonance condition of circuits. Notably, advantages of the proposed filter structure are compact size in design, wide range of realizable resonance frequency ratio, and more realizable impedances.

A Study on dual-band Wilkinson power divider with ${\pi}$-shaped parallel stub transmission lines for WLAN (${\pi}$-형 병렬 스터브 전송선로를 이용한 WLAN용 이중대역 Wilkinson 전력 분배기에 대한 연구)

  • Jo, Won-Geun;Kim, Dong-Seek;Ha, Dong-Ik;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.6
    • /
    • pp.105-112
    • /
    • 2010
  • Recently, wireless communication systems have been developed and the circuits which operate with the broad-band for multiband uses were introduced. However, broad-band circuits have problems that inevitably increase the size. Dual-band circuit operates only two frequency, therefore, it will be able to miniaturize through unnecessary decreased elements. The Wilkinson power divider is the one of the most commonly used components in wireless communication system for power division. Nowaday, the Wilkinson power divider is also demanded dual-band. In this paper, I propose miniaturized dual-band Wilkinson power divider operating at 2.45 GHz and 5.2 GHz for IEEE 802.11n standard. Proposed dual-band Wilkinson power divider is used in parallel stub line. The design is accomplished by transforming the electrical length and impedance of the quarter wave sections of the conventional Wilkinson power divider into dual band ${\pi}$-shaped sections.

Design of a Distributed Mixer Using Dual-Gate MESFET's (Dual-Gate MESFET를 이용한 분포형 주파수 혼합기의 설계)

  • Oh, Yang-Hyun;An, Jeong-Sig;Kim, Han-Suk;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.15-23
    • /
    • 1998
  • In this paper, distributed mixer is studied at microwave frequency. The circuit of distributed mixer composed of gate 1,2, drain transmission lines, matching circuits in input and output terminal, DGFET's. For impedance matching of input and output port at higher frequency, image impedance concept is introduced. In distributed mixer, a DGFET's impedances are absorbed by artificial transmission line, this type of mixer can get a very broadband characteristics compared to that of current systems. A RF/LO signal is applied to each gate input port, and are excited the drain transmission line through transcondutance of the DGFET's. The output signals from each drain port of DGFET's added in same phases. We designed and frabricated the distributed mixer, and a conversion gain, noise figure, bandwidth, LO/RF isolation of the mixer are shown through computer simulation and experimentation.

  • PDF

Analysis of a Distributed Mixer Using Dual-gate MESFETSs (Dual-gate MESFET를 사용한 분포형 혼합기 해석에 관한 연구)

  • 김갑기;오양현;정성일;이종익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.178-185
    • /
    • 1996
  • In this paper, a theoretical analysis of a wide band distributed mixer using a dual-gate GaAs MESFET's(DGFET) is introduced. Based on low noise mixer mode(LNM) region modeling of DGFET, variation of g/sub m/ and conversion gain are presented versus bias. The distributed mixer is composed of drain and gate transmission line, m-derived image impedance matching circuits at each input and output port, and DGFET's. Through computer simulation, wide-band characteristics of designed distributed mixer are confirmed. And, it is certificated that LO/RF isolation between gate 1 and gate 2 is obtained more than 15dB.

  • PDF

An Unequal Dual-Band Lumped Element Power Divider (비대칭 이중대역 집중소자 전력분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.578-584
    • /
    • 2011
  • This paper presents the design and measured performances of an unequal dual-band power divider using lumped elements. After the divider is designed using the conventional single band Wilkinson topology with lumped elements, we obtained the dual band characteristics with filter conversion method. This design method has the features of compact size and easy fabrication, because the high impedance transmission line realizes the lumped elements of equivalent circuit. As an example, an 2:1 divider has been designed and measured at 880 MHz and 1650 MHz in order to show the validity of the proposed unequal divider. The measured performances of the unequal power divider agree with the simulation results.