• 제목/요약/키워드: Dual current control

검색결과 210건 처리시간 0.023초

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

모듈형 계통연계 태양광 PCS (Modular Line-connected Photovoltaic PCS)

  • 서현우;권청민;김응호;권봉환
    • 전력전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.119-127
    • /
    • 2008
  • 본 논문에서는 모듈형 계통연계 태양광 PCS (photovoltaic power conditioning system)를 제안하였다. 능동-클램프 회로와 듀얼 직렬-공진 정류 회로를 이용하여 높은 입출력 전압 비를 효과적으로 구현하고 효율을 높인 승압형 DC-DC 컨버터를 제안하였다. 최대 전력점 추종 특성을 개선한 IncCond (incremental conductance) 방식의 MPPT (maximum power point tracking) 알고리즘을 사용하였다. 이 때 DC 전류 센서를 사용하지 않고 태양전지 모듈 (PV module)의 전류를 예측한다. 선형화 기법을 사용한 출력 전류 제어기로 인버터를 제어하여 단위 역률을 실현하였다. 모든 알고리즘과 제어기를 하나의 마이크로컨트롤러로 구현하고 제안된 DC-DC 컨버터와 제어기의 우수성을 실험을 통해 검증하였다.

Magnetic Field Analysis for Development of Magnetic Torquer

  • Yim, Jo-Ryeong;Lee, Seon-ho;Rhee, Seung-Wu
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.63-63
    • /
    • 2003
  • There are many actuators and sensors used for attitude control system for KOMPSAT such as Reaction Wheel Assembly, Magnetic Torque Assembly, Dual Thruster Module, Solar array Drive, Three Axis Magnetometer, Conical Earth Sensor, Fine Sun Sensor Assembly, Coarse Sun Sensor Assembly, Gyro Reference Assembly and so on. For KOMPSA T satellite it has been considered using the Magnetic Torquer (MTQ) generating the magnetic dipole moment. In general, the magnetic dipole moment for satellite attitude control system is used for dumping out the excessive reaction wheel momentum so that the reaction wheel speed is not saturated. The objective of this study is to analyze the magnetic field characteristics generated by the Magnetic Torquer using the Maxwell 2D Field Simulator software. Currently, the developing model (DM) of the MTQ is being developed and manufactured at a company under the supervision of KARL MTQ is an electromagnet consisting of a ferromagnetic cylindrical core on which an excitation coil is wound. A current is passed through the coil to produce a dipole momentum in the ferromagnetic core. The configuration of the MTQ will be introduced in the presentation. The 2 dimensional model of the MTQ is drawn as axisymmetric models in RZ plane, and each corresponding material is assigned to the each MTQ object, the core, coil, and background. After the boundary conditions, current sources, and solution parameters are set up, the magnetic field intensities, directions, and other values specified by users can be calculated by using the finite element analysis. The theoretical magnetic field quantities obtained by the Maxwell 2D Simulator can be used for the basis of the development of the MTQ.

  • PDF

농업용 전기차량의 전기식 동력인출장치용 전력변환시스템 (Power Conversion System for Electric Power Take-off of Agricultural Electric Vehicle)

  • 곽봉우;김종훈
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.994-1002
    • /
    • 2019
  • 본 논문은 농업용 전기차량의 전기식 동력인출장치용 전력변환시스템에 대해 제안한다. 대부분의 전기식 동력인출장치(Electric Power Take-Off : e-PTO)는 상용전원 $220V_{AC}$를 사용한다. 농업용 전기차량의 낮은 배터리 전압을 사용하여 높은 출력 전압을 공급하기 위한 DC-DC 컨버터와 DC-AC 인버터로 구성된 2단 구조를 갖는 양방향 전력변환시스템이 적합하다. 제안하는 전력변환시스템은 1단의 Dual Active Bridge(DAB)컨버터와 2단의 양방향 풀 브릿지 인버터로 구성된다. 또한, 초기 구동시 DC 버스단 커패시터 충전에 의해 발생되는 돌입 전류 저감을 위해 소프트 스타트 알고리즘을 제안한다. 3kW급 전력변환시스템 시제품 및 알고리즘을 구현하고 실험을 통해서 실용성을 입증하였다.

비대칭 6상 영구자석 동기 전동기의 정지 좌표계 DQ축 전류를 이용한 스위치 개방 고장 검출 기법 (Algorithm for Switch Open Fault Detection of Asymmetric 6-phase PMSM Based on Stationary Reference Frame dq-axis Currents)

  • 이원석;김한얼;황선환;이기창;박종원
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.265-270
    • /
    • 2022
  • 본 논문에서는 정지 좌표계 dq-축 전류를 기반으로 하는 비대칭 6상 PMSM의 스위치 개방 고장 검출 알고리즘을 제안한다. 본 논문에서의 해당 모터는 2개의 3상 권선이 30°의 전기적 위상차를 갖고 중성점이 분리된 비대칭 구조를 갖는다. 따라서 듀얼 3상 PWM 인버터와 스위치 개방 고장으로 인한 검출기법이 반드시 필요하다. 본 논문에서는 비대칭 6상 PMSM을 구동하기 위해 듀얼 dq축 전류 제어 방식을 사용하며 전역 통과 필터와 저역 통과 필터를 사용해 전류 변동을 감지하여 개방 고장이 발생한 스위치를 검출하는 방식을 제안한다. 제안한 방법의 효과와 유용성은 여러 실험을 통해 검증하였다.

Control and Analysis of an Integrated Bidirectional DC/AC and DC/DC Converters for Plug-In Hybrid Electric Vehicle Applications

  • Hegazy, Omar;Van Mierlo, Joeri;Lataire, Philippe
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.408-417
    • /
    • 2011
  • The plug-in hybrid electric vehicles (PHEVs) are specialized hybrid electric vehicles that have the potential to obtain enough energy for average daily commuting from batteries. The PHEV battery would be recharged from the power grid at home or at work and would thus allow for a reduction in the overall fuel consumption. This paper proposes an integrated power electronics interface for PHEVs, which consists of a novel Eight-Switch Inverter (ESI) and an interleaved DC/DC converter, in order to reduce the cost, the mass and the size of the power electronics unit (PEU) with high performance at any operating mode. In the proposed configuration, a novel Eight-Switch Inverter (ESI) is able to function as a bidirectional single-phase AC/DC battery charger/ vehicle to grid (V2G) and to transfer electrical energy between the DC-link (connected to the battery) and the electric traction system as DC/AC inverter. In addition, a bidirectional-interleaved DC/DC converter with dual-loop controller is proposed for interfacing the ESI to a low-voltage battery pack in order to minimize the ripple of the battery current and to improve the efficiency of the DC system with lower inductor size. To validate the performance of the proposed configuration, the indirect field-oriented control (IFOC) based on particle swarm optimization (PSO) is proposed to optimize the efficiency of the AC drive system in PHEVs. The maximum efficiency of the motor is obtained by the evaluation of optimal rotor flux at any operating point, where the PSO is applied to evaluate the optimal flux. Moreover, an improved AC/DC controller based Proportional-Resonant Control (PRC) is proposed in order to reduce the THD of the input current in charger/V2G modes. The proposed configuration is analyzed and its performance is validated using simulated results obtained in MATLAB/ SIMULINK. Furthermore, it is experimentally validated with results obtained from the prototypes that have been developed and built in the laboratory based on TMS320F2808 DSP.

고장력강의 구멍 확장 실험을 이용한 자동차부품 설계연구 (A Study of Automobile Product Design using Hole Expansion Testing of High Strength Steels)

  • 박병철;배경운;구선모;장승현;홍성훈;김영석
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.337-343
    • /
    • 2010
  • Current need of weight reduction in automotive part increases the application for high strength steel (HSS). The various types of high strength steels have been used to produce chassis part, control arms and trailing arms for weight reduction and increasing of fatigue durability such as dual phase steel (DP) and ferrite bainite steel (FB). But, DP and FB steels have proven to show inferiority in durability as well as press formability. Edge cracking occurred often in flange forming and hole expansion processes is the major failure encountered. This paper discussed the behavior of edge stretchability of high strength steel of DP and FB steels. Experimental works have been conducted to study the effect of punch clearance and burr direction on hole expansion ratio (HER). Also finite element simulation (FEM) has been preformed to clarify the mechanism of flange crack and support the experimental results on HER of DP and FB steels. It was simulated the whole process of blanking process following by hole expansion process and ductile fracture criterion named the modified Cockcroft-Latham model which was used to capture the fracture initiation. From the hole expansion tests and FEM simulation studies it was concluded that ferrite bainite steel showed better stretch-flangeability than dual phase steel. It was attributed to the lower work hardening rate of ferrite bainite steel than dual phase steel at the sheared edge.

Design and Control Method of ZVT Interleaved Bidirectional LDC for Mild-Hybrid Electric Vehicle

  • Lee, Soon-Ryung;Lee, Jong-Young;Jung, Won-Sang;Won, Il-Kwon;Bae, Joung-Hwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.226-239
    • /
    • 2018
  • In this paper, design and control method ZVT Interleaved Bidirectional LDC(IB-LDC) for mild-hybrid electric vehicle is proposed. The IB-LDC is composed of interleaved buck and boost converters employing an auxiliary inductor and auxiliary capacitors to achieve zero-voltage-transition. Operating principle of IB-LDC according to operation mode is introduced and mathematically analyzed in buck and boost mode. Moreover, PFM and phase control are proposed to reduce circulating current for low power range. Passive components design such as main inductor, auxiliary inductor and capacitors is suggested, considering ZVT condition and maximizing efficiency. Furthermore, a 600W prototype of ZVT IB-LDC for MHEVs is built and tested to verify validity.

Performance Analysis of a Stand-alone Brushless Doubly-fed Induction Generator Using a New T-type Steady-state Model

  • Liu, Yi;Xu, Wei;Zhi, Gang;Zhang, Junlin
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1027-1036
    • /
    • 2017
  • The brushless doubly-fed induction generator (BDFIG) is a new type of dual stator winding induction generator. In such a generator, both the power winding (PW) and the control winding (CW) are housed in the stator. This paper presents the performance characteristics of a stand-alone BDFIG operation system. A new T-type steady-state model of a BDFIG is proposed. This model is more suitable for the performance analysis of stand-alone BDFIGs than the conventional Π-type steady-state model and the simplified inner core steady-state model. The characteristics of the power flow and CW current are analyzed by detailed mathematical derivations on the basis of the proposed T-type steady-state model. The analysis results are verified by experiments, which are carried out on a prototype BDFIG. The results of the performance analysis contribute to simplifying the control circuit, improving the control performance, and selecting an appropriate BDFIG for actual industrial applications.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.