• Title/Summary/Keyword: Dual bias frequency

Search Result 36, Processing Time 0.022 seconds

Dual Bias Frequency를 이용한 자화된 ICP에서 ACL 식각 특성 분석

  • Kim, Ji-Won;Kim, Wan-Su;Lee, U-Hyeon;Hwang, Gi-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.376-377
    • /
    • 2013
  • 반도체산업이 발전함에 따라 패턴이 점점 더 복잡해 지고 있다. 이에 따라 웨이퍼 위에 올려지는 layer도 개수도 많아지고 점점 더 두꺼워진다. 예전에는 수백 nm였지만 최근에는 um단위까지 두꺼워지고 있다. 하지만 mask 역할을 하는 ACL과 substrate (SiO2)의 selectivity는 일정하기 때문에 mask 역할을 하는ACL layer 역시 두꺼워지는 것이 불가피하다. 이로인해 예전에는 없었던 문제들이 발생하기 시작한다. Mask 역할을 하는 ACL layer가 얇고 패턴 크기가 클 때에는 아무런 문제도 없었지만 ACL layer도 두꺼워 지고 패턴 크기도 수십 nm로 작아졌기 때문에 ACL 역시 식각 공정을 할 때 어려움이 생기기 시작한다. 이를 해결하기 위한 하나의 방법으로 자화된 ICP 챔버 substrate에 Dual bias frequency 인가하여 식각해 보고 이와같이 하였을 때 식각특성을 분석해 보았다. 자화된 ICP 챔버에서 substrate에 dual bias frequency를 인가함으로써 ion energy와 ion flux에 변화가 생기게 되고 이로 인해 다른 식각 특성이 나타나게 되었다. Dual bias frequency의 비율을 변화시켜 보고 변화에 따른 식각 특성을 분석해 보았다. 이와 같은 과정을 통하여 높은 주파수와 낮은 주파수의 각각의 변화에 따른 식각특성의 변화에 대한 이해를 할 수 있었다.

  • PDF

Error Analysis of Inter-Frequency Bias Estimation in Global Navigation Satellite System Signals (위성항법 신호 이중주파수간 편이 추정오차 분석)

  • Kim, Jeongrae;Noh, Jeong Ho;Lee, Hyung Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.16-21
    • /
    • 2012
  • Global navigation satellite systems (GNSS) use dual frequency signals to remove ionosphere delay effect. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual frequencies due to differential signal delays in receiving each frequency codes. The IFB degrades pseudo-range and ionosphere delay accuracies, and they must be accurately estimated. Simultaneous estimation of ionosphere map and IFB is applied in order to analyze the IFB estimation accuracy and variability. GPS network data in Korea is used to compute each receiver's IFB. Accuracy changes due to ionosphere model changes is analyzed and the effect of external GNSS satellite IFB on the receiver IFB is analyzed.

A 2.4 /5.2-GHz Dual Band CMOS VCO using Balanced Frequency Doubler with Gate Bias Matching Network

  • Choi, Sung-Sun;Yu, Han-Yeol;Kim, Yong-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • This paper presents the design and measurement of a 2.4/5.2-GHz dual band VCO with a balanced frequency doubler in $0.18\;{\mu}m$ CMOS process. The topology of a 2.4 GHz VCO is a cross-coupled VCO with a LC tank and the frequency of the VCO is doubled by a frequency balanced doubler for a 5.2 GHz VCO. The gate bias matching network for class B operation in the balanced doubler is adopted to obtain as much power at 2nd harmonic output as possible. The average output powers of the 2.4 GHz and 5.2 GHz VCOs are -12 dBm and -13 dBm, respectively, the doubled VCO has fundamental harmonic suppression of -25 dB. The measured phase noises at 5 MHz frequency offset are -123 dBc /Hz from 2.6 GHz and -118 dBc /Hz from 5.1 GHz. The total size of the dual band VCO is $1.0\;mm{\times}0.9\;mm$ including pads.

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

Electrode Charging Effect on Ion Energy Distribution of Dual-Frequency Driven Capacitively Coupled Plasma Etcher (이중 주파수 전원의 용량성 결합 플라즈마 식각장비에서 전극하전에 의한 입사이온 에너지분포 변화연구)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.39-43
    • /
    • 2014
  • The effect of electrode charging on the ion energy distribution (IED) was investigated in the dual-frequency capacitively coupled plasma source which was powered of 100 MHz RF at the top electrode and 400 kHz bias on the bottom electrode. The charging property was analyzed with the distortion of the measured current and voltage waveforms. The capacitance and the resistance of electrode sheath can change the property of ion and electron charging on the electrode so it is sensitive to the plasma density which is controlled by the main power. The ion energy distribution was estimated by equivalent circuit model, being compared with the measured distribution obtained from the ion energy analyzer. Results show that the low frequency bias power changes effectively the low energy population of ion in the energy distribution.

Estimation of Ionospheric Delays in Dual Frequency Positioning - Future Possibility of Using Pseudo Range Measurements -

  • Isshiki, Hiroshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.185-190
    • /
    • 2006
  • The correct estimation of the ionospheric delays is very important for the precise kinematic positioning especially in case of the long baseline. In case of triple frequency system, the ionospheric delays can be estimated from the measurements, but, in case of dual frequency system, the situation is not so simple. The precision of those supplied by the external information source such as IONEX is not sufficient. The high frequency component is neglected, and the precision of the low frequency component is not sufficient for the long baseline positioning. On the other hand, the high frequency component can be estimated from the phase range measurements. If the low frequency components are estimated by using the external information source or pseudo range measurements, a more reasonable estimation of the ionospheric delays may be possible. It has already been discussed by the author that the estimation of the low frequency components by using the external information source is not sufficient but fairly effective. The estimation using the pseudo range measurements is discussed in the present paper. The accuracy is not sufficient at present because of the errors in the pseudo range measurements. It is clarified that the bias errors in the pseudo range measurements are responsible for the poor accuracy of the ionospheric delays. However, if the accuracy of the pseudo range measurements is improved in future, the method would become very promising.

  • PDF

Estimation Accuracy Analysis of GPS Inter-Frequency Biases (GPS 주파수간 편이 추정정확도 분석)

  • Kim, Minwoo;Kim, Jeongrae;Heo, Moonbeom
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-22
    • /
    • 2010
  • The accuracy and integrity of global navigation satellite systems (GNSS) can be improved by using GNSS augmentation systems. Large ionospheric spatial gradient, during ionosphere storm, is a major threat for using GNSS augmentation systems by increasing the spatial decorrelation between a reference system and users. Ionosphere decorrelation behavior can be analyzed by using dual frequency GPS data. GNSS receivers have their own biases, called inter-frequency bias (IFB) between dual(P1 and P2) frequencies and they must be accurately estimated before computing ionosphere delays. GPS network data in Korea is used to compute each receiver's IFB, and their estimation accuracy and variability are analyzed. IFB estimation methodology to apply for ionosphere gradient analysis is discussed.

  • PDF

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

A Design of Dual Frequency Bands Time Synchronization System for Synchronized-Pseudolite Navigation System

  • Seo, Seungwoo;Park, Junpyo;Suk, Jin-Young;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.71-81
    • /
    • 2014
  • Time synchronization system using dual frequency bands is designed and the error sources are analyzed for alternative synchronized-pseudolite navigation system (S-PNS) which aims at military application. To resolve near/far problem, dual frequency band operation is proposed instead of pulsing transmission which degrades level of reception. In dual frequency operation H/W delay should be considered to eliminate errors caused by inter-frequency bias (IFB) difference between the receivers of the pseudolites and users. When time synchronization is performed across the sea, multipath error is occurred severely since the elevation angle between pseudolites is low so total reflection can be happened. To investigate the difference of multipath effects according to location, pseudolites are set up coastal area and land area and performances are compared. The error source related with tropospheric delay is becoming dominant source as the coverage of the PNS is broadening. The tropospheric delay is measured by master pseudolite receiver directly using own pseudorange and slave pseudorange. Flight test is performed near coastal area using S-PNS equipped with developed time synchronization system and test results are also presented.

Selective etching of SiO2 using embedded RF pulsing in a dual-frequency capacitively coupled plasma system

  • Yeom, Won-Gyun;Jeon, Min-Hwan;Kim, Gyeong-Nam;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.136.2-136.2
    • /
    • 2015
  • 반도체 제조는 chip의 성능 향상 및 단가 하락을 위해 지속적으로 pattern size가 nano size로 감소해 왔고, capacitor 용량은 증가해 왔다. 이러한 현상은 contact hole의 aspect ratio를 지속적으로 증가시킨바, 그에 따라 최적의 HARC (high aspect ratio contact)을 확보하는 적합한 dry etch process가 필수적이다. 그러나 HARC dry etch process는 많은 critical plasma properties 에 의존하는 매우 복잡한 공정이다. 따라서, critical plasma properties를 적절히 조절하여 higher aspect ratio, higher etch selectivity, tighter critical dimension control, lower P2ID과 같은 plasma characteristics을 확보하는 것이 요구된다. 현재 critical plasma properties를 제어하기 위해 다양한 plasma etching 방법이 연구 되어왔다. 이 중 plasma를 낮은 kHz의 frequency에서 on/off 하는 pulsed plasma etching technique은 nanoscale semiconductor material의 etch 특성을 효과적으로 향상 시킬 수 있다. 따라서 본 실험에서는 dual-frequency capacitive coupled plasma (DF-CCP)을 사용하여 plasma operation 동안 duty ratio와 pulse frequency와 같은 pulse parameters를 적용하여 plasma의 특성을 각각 제어함으로써 etch selectivity와 uniformity를 향상 시키고자 하였다. Selective SiO2 contact etching을 위해 top electrode에는 60 MHz pulsed RF source power를, bottom electrode에는 2MHz pulse plasma를 인가하여 synchronously pulsed dual-frequency capacitive coupled plasma (DF-CCP)에서의 plasma 특성과 dual pulsed plasma의 sync. pulsing duty ratio의 영향에 따른 etching 특성 등을 연구 진행하였다. 또한 emissive probe를 통해 전자온도, OES를 통한 radical 분석으로 critical Plasma properties를 분석하였고 SEM을 통한 etch 특성분석과 XPS를 통한 표면분석도 함께 진행하였다. 그 결과 60%의 source duty percentage와 50%의 bias duty percentage에서 가장 향상된 etch 특성을 얻을 수 있었다.

  • PDF