• Title/Summary/Keyword: Dual band LNA

Search Result 22, Processing Time 0.028 seconds

Noise Analysis of Common Source CMOS Pair for Dual-Band LNA (이중밴드 저잡음 증폭기 설계를 위한 공통 소스 접지형 CMOS 쌍의 잡음해석)

  • 조민수;김태성;김병성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.140-144
    • /
    • 2004
  • The selectable dual band LNA usually uses common source transistor pair each input of which is selectively driven at a different frequency in a series resonant form. This paper analyzes the degradation in noise figures of the MOSFET common source pair with series resonance when it is driven concurrently at both inputs with different frequencies as a concurrent dual band LNA. Results of analysis will be compared with the measured noise figures of CMOS LNA with double inputs fabricated in 0.18 $\mu\textrm{m}$ CMOS process. Additionally, analyzing the contributions of FET channel noise and source noise from the LNA operating in the other band, this paper proposes optimum matching topology which minimizes the added noises for concurrent operation.

Design of Dual Band LNA Using Source Feedback (소스 피드백을 이용한 이중대역 저잡음 증폭기 설계)

  • Jeon, Hyun-Jin;Choi, Kum-Sung;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.127-128
    • /
    • 2007
  • A dual band LNA is designed to set input matching and noise matching with source transmission feedback for wireless LAN applications. Some design techniques for the transmission line feedback of the dual band LNA have been developed with input and output design equations. The measured results shows close agreement with the simulated performance.

  • PDF

Design of Dual Band LNA for Wireless LAN Using Source Feedback (소스 피드백을 이용한 무선랜용 이중대역 저잡음 증폭기 설계)

  • Jeon, Hyun-Jin;Choi, Kum-Sung;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.23-28
    • /
    • 2007
  • A dual-band GaAs FET low noise amplifier (LNA) with an input LC-tank circuit is designed using inductance source feedback for wireless LAN, and output matching is realized with low-pass Cheyshev filter impedance transforming circuit. Some design techniques for dual band LNA have been developed including input and output design equations. The measured results shows close agreement with the predicted performance.

A Design of Dual Band LNA for RFID reader Using Tunable Matching Circuit (Tunable 매칭 회로를 적용한 RFID 리더용 Dual Band LNA 설계)

  • Oh, Jae-Wook;Lim, Tae-Seo;Choi, Jin-Kyu;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.3-6
    • /
    • 2007
  • In this paper, a hybrid dual band LNA(Low Noise Amplifier) with a tunable matching circuit using varactor is designed for 433MHz and 912MHz RFID reader. The operating frequency is controlled by the bias voltage applied to the varactor. The measured results demonstrate that S21 parameter is 16.01dB and 10.72dB at 433MHz and 912MHz, respectively with a power consumption of 19.36mW. The S11 are -11.88dB and -3.31dB, the S22 are -11.18dB and -15.02dB at the same frequencies. The measured NF (Noise Figure) is 15.96dB and 7.21dB at 433MHz and 912MHz, respectively. The NF had poorer performance than the simulation results. The reason for this discrepancy was thought that the input matching is not performed exactly and a varactor in the input matching circuit degrades the NF characteristics.

  • PDF

Design of Broad Band RF Components for Partial Discharge Monitoring System (부분방전 모니터링 시스템을 위한 광대역 RF 소자설계 연구)

  • Lee, Je-Kwang;Ko, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2286-2292
    • /
    • 2011
  • In this paper we present the design of Low Noise Amplifier(LNA), mixer and filter for RF front-end part of partial discharge monitoring system. The monitoring system of partial discharge in high voltage power machinery is used to prevent many kinds of industrial accidents, and is usually composed of three parts - sensor, RF front-end and digital microcontroller unit. In our study, LNA, mixer and filter are key components of the RF front-end. The LNA consists of common gate and common source-cascaded structure and uses the resistive feedback for broad band matching. A coupled line structure is utilized to implement the filter, of which size is reduced by the meander structure. The mixer is designed using dual gate structure for high isolation between RF and local oscillator signal.

Noise Analysis of Common Source CMOS Pair for Dual-Band LNA (이중밴드 저잡음 증폭기 설계를 위한 공통 소스 접지형 CMOS쌍의 잡음해석)

  • Cho, Min-Soo;Kim, Tae-Sung;Kim, Byung-Sung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.168-172
    • /
    • 2003
  • This paper analyzes the output noise and the noise figure of common source MOSFET pair each input of which is separately driven in the different frequencies. This analysis is performed for concurrent dual band cascode CMOS LNA with double inputs and single output fabricated in $0.18{\mu}m$ CMOS process. Since both inputs and output are matched to near $50{\Omega}$ using on-chip inductors, the measured noise figures are much higher than those of usual CMOS LNA. But, the main concern of this paper is focused on the added noise features due to the other channel common source stage. The dual-band LNA results in noise figure of 4.54dB at 2.14GHz and 6.03dB at 5.25GHz for selectable operation and 7.44dB and 6.58dB for concurrent operation. The noise analysis explains why the added noise at each band shows so large difference.

  • PDF

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

A Design of Dual Band LNA for RFID Reader Using LC-tank Matching Circuit (LC-Tank 매칭 회로를 적용한 RFID 리더용 이중대역 저잡음 증폭기 설계)

  • Lee, Je-Kwang;Go, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.153-157
    • /
    • 2010
  • In this paper, a dual band LNA (Low Noise Amplifier) with a LC-tank matching circuit is designed for 912MHz and 2.45GHz RFID reader. The operating frequency is decided by the LC-tank resonance. The simulated results demonstrate that S21 parameter is 11.683dB and 5.748dB at 912MHz and 2.45GHz, respectively, and the S11 are -10.796dB and -21.261dB, the S22 are -7.131dB and -14.877dB at the same frequencies. The measured NF (Noise Figure) is 0.471 and 1.726 at 912MHz and 2.45GHz, respectively.

  • PDF

A Design of Dual Band LNA for RFID Using Varactor Diode (Varactor를 이용한 RFID 이증 대역 LNA 설계)

  • Choi, Jin-Kyu;Ko, Jae-Hyeong;Chang, Se-Wook;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.151-152
    • /
    • 2008
  • In this paper, a dual band LNA (Low Noise Amplifier) with a matching circuit using varactor diode is designed for 912MHz and 2450MHz RFID system. The operating frequency is controlled by the bias voltage applied to the varactor diode. The measured results demonstrate that gain is 13.6dB and 6.8dB at 912MHz and 2450MHz. The measured NF (Noise Figure) is 1.4dB and 3.1dB at 912MHz and 2450MHz, respectively.

  • PDF

A RF Frong-End CMOS Transceiver for 2㎓ Dual-Band Applications

  • Youn, Yong-Sik;Kim, Nam-Soo;Chang, Jae-Hong;Lee, Young-Jae;Yu, Hyun-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • This paper describes RF front-end transceiver chipset for the dual-mode operation of PCS-Korea and IMT-2000. The transceiver chipset has been implemented in a $0.25\mutextrm{m}$ single-poly five-metal CMOS technology. The receiver IC consists of a LNA and a down-mixer, and the transmitter IC integrates an up-mixer. Measurements show that the transceiver chipset covers the wide RF range from 1.8GHz for PCS-Korea to 2.1GHz for IMT-2000. The LNA has 2.8~3.1dB NF, 14~13dB gain and 5~4dBm IIP3. The down mixer has 15.5~16.0dB NF, 15~13dB power conversion gain and 2~0dBm IIP3. The up mixer has 0~2dB power conversion gain and 6~3dBm OIP3. With a single 3.0V power supply, the LNA, down-mixer, and up-mixer consume 6mA, 30mA, and 25mA, respectively.