• Title/Summary/Keyword: Dual active bridge

Search Result 83, Processing Time 0.024 seconds

A Current Sensor-less Bridgeless CCM Single-Stage PFC Converter with Semi-Active Rectifier (Semi-Active Rectifier를 적용한 센서리스 단일단 브리지리스 PFC 컨버터)

  • Naradhipa, Adhistira M.;Kang, Suhan;Hai, Tran;Sagpazar, Nur Banu;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.59-61
    • /
    • 2018
  • 본 논문에서는 입력전류를 센싱 받지 않아도 역률 보상을 하는 새로운 단일단 브리지리스 AC-DC컨버터를 제안한다. 제안하는 컨버터의 스위치는 전구간에서 ZVS(Zero Voltage Switching) 턴 온을 성취하며, 다이오드는 전구간에서 ZCS(Zero Current Switching) 턴 오프를 성취한다. 제안하는 컨버터의 넓은 범위의 출력전압 제어와 간단한 전력 제어를 위해 SDAB(Semi-Dual Active Bridge)기반의 모듈레이션 기법을 적용하였다. 1kW급 50kHz의 스위칭 주파수를 갖는 시작품을 통해 본 논문의 타당성을 검증하였다.

  • PDF

Comparison and Analysis of Control Strategies to Improve Bidirectional Isolated Charger Efficiency for Electric Vehicles (전기자동차 충전기용 양방향 절연형 DC-DC 컨버터 효율 개선 제어기법 비교 분석)

  • Ahn, Hyo-Min;Cho, Yong-Ki;Woo, Dong-Gyun;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.151-152
    • /
    • 2013
  • 본 논문에서는 DAB(Dual Active Bridge)로 구성된 양방향 절연형 DC-DC 컨버터의 제어 기법인 SPS(Single Phase Shift)와 DPS(Dual Phase Shift)를 양방향 OBC(On-Board Charger)의 충전 및 방전모드에 적용한다. 그리고 각 모드의 입출력 조건에 따라 전력 반도체 소자에서 발생되는 손실을 PSIM 시뮬레이션과 수학적 분석을 통해 예측하고, 이를 비교 분석한다.

  • PDF

An Isolated Bidirectional Modular Multilevel DC/DC Converter for Power Electronic Transformer Applications

  • Wang, Zhaohui;Zhang, Junming;Sheng, Kuang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.861-871
    • /
    • 2016
  • With high penetration of renewable energies, power electronic transformers (PETs) will be one of the most important infrastructures in the future power delivery and management system. In this study, an isolated bidirectional modular multilevel DC/DC converter is proposed for PET applications. A modular multilevel structure is adopted as switching valves to sustain medium voltages to achieve modular design and high reliability. Only one high-frequency transformer is used in the proposed converter, which significantly simplifies the circuit and galvanic insulation design. A dual-phase-shift modulation strategy is proposed to regulate the output power and achieve a simple voltage balancing control. A down-scaled (2 kW/20 kHz) prototype is constructed to demonstrate the proposed converter and verify the control strategy. The experimental results comply with the theoretical analysis well, with the highest power efficiency reaching 97.6%.

Design Methodology of a Three-Phase Dual Active Bridge Converter for Low Voltage Direct Current Applications

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Young-Pyo;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.482-491
    • /
    • 2018
  • The practical design methodology of a three-phase dual active bridge (3ph-DAB) converter applied to low voltage direct current (LVDC) applications is proposed by using a mathematical model based on the steady-state operation. An analysis of the small-signal model (SSM) is important for the design of a proper controller to improve the stability and dynamics of the converter. The proposed lead-lag controller for the 3ph-DAB converter is designed with a simplified SSM analysis including an equivalent series resistor (ESR) for the output capacitor. The proposed controller can compensate the effects of the ESR zero of the output capacitor in the control-to-output voltage transfer function that can cause high-frequency noises. In addition, the performance of the power converter can be improved by using a controller designed by a SSM analysis without additional cost. The accuracy of the simplified SSM including the ESR zero of the output capacitor is verified by simulation software (PSIM). The design methodology of the 3ph-DAB converter and the performance of the proposed controller are verified by experimental results obtained with a 5-kW prototype 3ph-DAB converter.

Operating Frequency Design for Stable Initial Operation of Loosely Coupled Resonant DAB Converter (Loosely Coupled Resonant DAB 컨버터의 안정적인 초기 구동을 위한 동작 주파수 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin;Lee, Jaehong;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.437-445
    • /
    • 2021
  • This paper proposes an operating frequency design method that limits the voltage applied to aload-side converter during the initial operation of a loosely coupled resonant dual-active bridge (LCR-DAB) converter and an initial operating strategy that applies it. The LCR-DAB converter uses two wireless power transfer coils instead of the high-frequency transformer of the general DAB converter. The wireless power coil has a physical distance of several tens of millimeter or more between the two coils; thus, the LCR-DAB converter is a bidirectional isolated power conversion system that can easily achieve high insulation performance. However, for the initial operation of the LCR-DAB, if the power-side converter is operated at the resonance frequency while the load-side converter is not operating, then a very high voltage due to resonance is applied to the load-side converter, thereby causing damage to the converter. Therefore, a method that can stably charge the DC link voltage of the secondary-side converter during the initial operation is needed. This paper proposes a method to initially charge the secondary-side DC link by operating the primary-side converter at a frequency with limited voltage gain rather than at a steady-state operating frequency. The validity of the proposed frequency design method and initial operating sequence is verified through simulation and experimentation of the 1 KW LCR-DAB converter.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

A Single-Stage AC-DC Power Module Converter for Fast-Charger (급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터)

  • LE, Tat-Thang;Choi, Sewan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.

Bidirectional Series Resonant Converter with Soft Switching Capability (소프트 스위칭 기능을 갖춘 양방향 직렬 공진형 컨버터)

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.13-14
    • /
    • 2017
  • 1차와 2차측의 위상 변조를 이용하는 Dual Active Bridge (DAB) 형태의 직렬 공진형 양방향 컨버터는 이미 구현되었다. 하지만 이는 좁은 영전압 스위칭 범위를 가지고 경부하시 전력변환 효율을 떨어뜨린다. 본 논문은 Sinple Phase Shift (SPS)와 Extended Phase Shift (EPS)를 사용하는 양방향 직렬 공진형 컨버터를 제안하고 이를 이용하여 전부하 구간동안 소프트 스위칭을 얻고자 한다. 정방향 및 역방향 전력 변환에 따른 영전압 스위칭의 조건을 분석하고 공진 탱크와 제어 자유도를 조절 방법에 대해 분석하고자 한다. 제안하는 분석 및 디자인 방법은 500 W 직렬 공진형 컨버터를 통해 검증하였다.

  • PDF

Isolated PFC Converter Based on an ADAB Structure with Harmonic Modulation for EV Chargers

  • Choi, Seung-Won;Kim, Yoon-Jae;Lee, Il-Oun;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.383-394
    • /
    • 2018
  • This paper presents an isolated power factor correction converter for general-purpose electric vehicle chargers with a wide output voltage range. The converter is based on an asymmetrical dual active bridge structure so that the voltage stress of switching devices can be eliminated by transferring the transformer leakage inductance to the circuit parameters. Harmonic and output controls are performed by secondary switches, and primary switches are only operated at a fixed frequency with a 50% duty ratio. A harmonic modulation technique is also adopted to obtain a near-unity power factor without input current monitoring. The feasibility of the proposed charger is verified with a 3.3 kW prototype.

Modular Line-connected Photovoltaic PCS (모듈형 계통연계 PV PCS)

  • Seo, Hyun-Woo;Kwon, Jung-Min;Kim, Eung-Ho;Kwon, Bong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • The modular line-connected photovoltaic PCS (power conditioning system) is proposed. The proposed system consists of a step-up DC-DC converter and a full-bridge inverter. A step-up DC-DC converter using a dual series-resonant rectifier circuit and a active-clamp circuit is proposed to achieve a high efficiency and a high input-output voltage ratio efficiently. An IncCond (incremental conductance) MPPT (maximum power point tracking) algorithm that improves MPPT characteristic is used. By control a inverter using a linearized output current controller, a unity power factor is achieved. All algorithms and controllers are implemented on a single-chip microcontroller and the superiority of the proposed algorithms and controllers is proved by experiments.

  • PDF