DOI QR코드

DOI QR Code

Isolated PFC Converter Based on an ADAB Structure with Harmonic Modulation for EV Chargers

  • Received : 2017.08.25
  • Accepted : 2017.11.18
  • Published : 2018.03.20

Abstract

This paper presents an isolated power factor correction converter for general-purpose electric vehicle chargers with a wide output voltage range. The converter is based on an asymmetrical dual active bridge structure so that the voltage stress of switching devices can be eliminated by transferring the transformer leakage inductance to the circuit parameters. Harmonic and output controls are performed by secondary switches, and primary switches are only operated at a fixed frequency with a 50% duty ratio. A harmonic modulation technique is also adopted to obtain a near-unity power factor without input current monitoring. The feasibility of the proposed charger is verified with a 3.3 kW prototype.

Keywords

E1PWAX_2018_v18n2_383_f0001.png 이미지

Fig. 1. Schematic of a charger composed of the proposed isolatedPFC converter with harmonic modulation and a buck converter.

E1PWAX_2018_v18n2_383_f0002.png 이미지

Fig. 2. Key waveforms of the proposed PFC converter.

E1PWAX_2018_v18n2_383_f0003.png 이미지

Fig. 3. Mode diagrams of the proposed PFC converter.

E1PWAX_2018_v18n2_383_f0004.png 이미지

Fig. 4. Input current, excluding the magnetizing current, duringone switching cycle.

E1PWAX_2018_v18n2_383_f0005.png 이미지

Fig. 5. Inductor current envelope and line current waveform ofconventional DCM operation (a) and those adopting a harmoniccontroller (b).

E1PWAX_2018_v18n2_383_f0006.png 이미지

Fig. 6. Equivalent circuit during dead times between gate signalsof the primary side switches.

E1PWAX_2018_v18n2_383_f0007.png 이미지

Fig. 7. Equivalent circuit in the secondary side when the drain-source voltages of all primary switches change from zero to vin orfrom vin to zero.

E1PWAX_2018_v18n2_383_f0008.png 이미지

Fig. 8. Experimental prototype for performance validation.

E1PWAX_2018_v18n2_383_f0009.png 이미지

Fig. 9. Measured waveforms in accordance with load and linevoltage variations.

E1PWAX_2018_v18n2_383_f0010.png 이미지

Fig. 10. Switching waveforms in accordance with load changesat Vac=220 Vrms/VL=500 V.

E1PWAX_2018_v18n2_383_f0011.png 이미지

Fig. 11. ZVS status of primary switches in accordance with inputvoltage magnitudes.

E1PWAX_2018_v18n2_383_f0012.png 이미지

Fig. 12. Measured waveforms of the buck converter.

E1PWAX_2018_v18n2_383_f0013.png 이미지

Fig. 13. Measured power factor and efficiency plots inaccordance with load variations.

E1PWAX_2018_v18n2_383_f0014.png 이미지

Fig. 14. Measured harmonics and total harmonic distortion(THD) of the input current at the rated condition.

E1PWAX_2018_v18n2_383_f0015.png 이미지

Fig. 15. Calculated losses at Vac=220 Vrms/Po=3.3 kW.

TABLE I KEY COMPONENT LIST OF THE PROTOTYPE CONVERTER

E1PWAX_2018_v18n2_383_t0001.png 이미지

TABLE II PERFORMANCE COMPARISON TABLE

E1PWAX_2018_v18n2_383_t0002.png 이미지

TABLE III EFFICIENCY COMPARISON BETWEEN THE PROPOSED CHARGER AND PREVIOUS WORK

E1PWAX_2018_v18n2_383_t0003.png 이미지

References

  1. S. Kimura, Y. Itoh, W. Martinez, M. Yamamoto, and J. Imaoka, "Downsizing effects of integrated magnetic components in high power density DC-DC converters for EV and HEV applications," IEEE Trans. Ind. Appl., Vol. 52, No. 4, pp. 3294-3305, Jul./Aug. 2016. https://doi.org/10.1109/TIA.2016.2539920
  2. A. K. Rathore and U R Prasanna, "Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4482-4491, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213563
  3. K. M. Rahman, S. Jurkovic, S. Hwakins, S. Tarnowsky, and P. Savagian, "Propulsion system design of a battery electric vehicle," IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 14-24, Jun. 2014. https://doi.org/10.1109/MELE.2014.2316977
  4. N. Shafiei, S. A. Arefifar, M. A. Saket, and M. Ordonez, "High efficiency LLC converter design for universal battery chargers," in Proc. IEEE APEC, pp. 2561-2566, 2016.
  5. F. Musavi, M. Craciun, D. S. Gautam, and W. Eberle, "Control strategies for wide output voltage range LLC resonant DC-DC converters in battery chargers," IEEE Trans. Veh. Technol., Vol. 63, No. 3, pp. 1117-1125, Mar. 2014. https://doi.org/10.1109/TVT.2013.2283158
  6. M. Yilmaz and P. T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2151-2169, May 2013. https://doi.org/10.1109/TPEL.2012.2212917
  7. J. Schmenger, S. Zeltner. R. Kramr, S. Endres, and M. Marz, "A 3.7 kW on-board charger based on modular circuit design," in Proc. IEEE IECON, pp. 1382-1387, 2015.
  8. D. Gautam, F. Musavi, M. Edington, W. Eberle, and W. Dunford, "Zero voltage switching full-bridge DC-DC converter for an on-board PHEV battery charger," in Proc. IEEE ITEC, pp. 1-6, 2012.
  9. Y. D. Kim, K. M. Cho, D. Y. Kim, G. W. Moon, "Wide-range ZVS phase-shift full-bridge converter with reduced conduction loss caused by circulating current," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3308- 3316, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2227280
  10. D. Guatam, F. Musavi, M. Edington, W. Eberle, and W. G. Gunford, "An automotive on-board 3.3 kW battery charger for PHEV application," in Proc. IEEE VPPC, pp. 1-6, 2011.
  11. I. O. Lee and G. W. Moon, "Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers," IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp. 3978-3988, Aug. 2014. https://doi.org/10.1109/TIE.2013.2282608
  12. R. Beiranvand, M. R. Zolghadri, B. Rashidian, and S. M. H. Alavi, "Optimizing the LLC-LC resonant converter topology for wide-output-voltage and wide-output-load applications," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3192-3204, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2143429
  13. Y. K. Lo, C. Y. Lin, M. T. Hsieh, and C. Y. Lin, "Phaseshifted full-bridge series-resonant DC-DC converters for wide load variations," IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2572-2575, Jun. 2011. https://doi.org/10.1109/TIE.2010.2058076
  14. H. Wang, S. Dusmez, and A. Khaligh, "Design and analysis of a full-bridge LLC-based PEV charger optimized for wide battery voltage range," IEEE Trans. Veh. Technol., Vol. 63, No. 4, pp. 1603-1613, May 2014. https://doi.org/10.1109/TVT.2013.2288772
  15. J. Park and S. Choi, "Zero-current switching series loaded resonant converter insensitive to resonant component tolerance for battery charger," IET Power Electron., Vol. 7, No. 10, pp. 2517-2524, Oct. 2013. https://doi.org/10.1049/iet-pel.2013.0757
  16. C. Y. Oh, J. S. Kim, Y. S. Kim, and B. K. Lee, "Design of resonant network based on power losses analysis of series resonant converter for on-board battery charger in EVs," in Proc. IEEE VPPC, pp. 1048-1053, 2012.
  17. N. Shafiei, M. Ordonez, M. Craciun, C. Botting, and M. Edington, "Burst mode elimination in high-power LLC resonant battery charger for electric vehicles," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1173-1188, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2420573
  18. B. K. Lee, J. P. Kim, S. K. Kim, and J. Y. Lee, "A PWM SRT DC/DC converter for 6.6-kW EV onboard charger," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 894-902, Feb. 2014. https://doi.org/10.1109/TIE.2015.2480384
  19. X. Wang, H. Ben, T. Meng, and B. Liu, "An auxiliary link based on flyback circuit with voltage spike suppression for single-phase isolated full-bridge boost PFC," in proc. IPEMC ECCE, pp. 1333-1337, 2016.
  20. V. Yakushev, V. Meleshin, and S. Fraidlin, "Full-bridge isolated current fed converter with active clamp," in Proc. IEEE APEC, pp. 560-566, 1999.
  21. N. Q. Trong, H. J. Chiu, Y. K. Lo, C. Y. Lin, and M. M. Alam, "Modified current-fed full-bridge isolated power factor correction converter with low-voltage stress," IET Power Electron., Vol. 7, No. 4, pp. 861-867, Apr. 2014. https://doi.org/10.1049/iet-pel.2013.0183
  22. B. Su and Z. Lu, "An improved single-stage power factor correction converter based on current-fed full-bridge topology," in Proc. IEEE PESC, pp. 472-475, 2008.
  23. B. Kim, M. Kim, and S. Choi, "Single-stage electrolytic capacitor-less AC-DC converter with high frequency isolation for EV charger," in Proc. IPEMC ECCE, pp. 234-238, 2016.
  24. C. Li, Y. Zhang, Z. Cao, and D. Xu, "Single-phase single-stage isolated ZCS current-fed full-bridge converter for high power AC-DC applications," IEEE Trans. Power Electron., Vol. 32, No. 9, pp. 6800-6812, Sep. 2017. https://doi.org/10.1109/TPEL.2016.2623771
  25. T. Meng, S. Yu, H. Ben, and G. Wei, "A family of multilevel passive clamp circuits with coupled inductor suitable for single-phase isolated full-bridge boost PFC converter," IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 4348-4356, Aug. 2016. https://doi.org/10.1109/TPEL.2013.2296116
  26. J. Y. Lee, Y. D. Yoon, and J. W. Kang, "A single-phase battery charger design for LEV based on DC-SRC with resonant valley-fill circuit," IEEE Trans. Ind. Electron., Vol. 62, No. 4, pp. 2195-2205, Apr. 2015. https://doi.org/10.1109/TIE.2014.2351371
  27. M. Han, H. Wu, Y. Xing, and X. Ma, "A single-stage soft switched power factor correction converter based on Asymmetric Dual Active Bridge converter," in Proc. IEEE IFEEC, pp. 1-5, 2015.
  28. J. Y. Lee and H. J. Chae, "6.6-kW onboard charger design using DCM PFC converter with harmonic modulation technique and two-stage DC/DC converter," IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1243-1251, Mar. 2014. https://doi.org/10.1109/TIE.2013.2262749
  29. Magnetics Co., Curve Fit Equations for Ferrite Materials (Bulletin FC-S7), Delta Drive, Pittsburgh, PA, USA [Online]. Available: http://www.lodestonepacific.com/distrib/ pdfs/Magnetics/FC-S7.pdf
  30. J. H. Kim, I. O. Lee, and G. W. Moon, "Analysis and design of a hybrid-type converter for optimal conversion efficiency in electric vehicle chargers," IEEE Trans. Ind. Electron., Vol. 64, No. 4, pp. 2789-2800, Apr. 2017. https://doi.org/10.1109/TIE.2016.2623261
  31. H. Haga and F. Kurogawa, "Modulation method of a full-bridge three-level LLC resonant converter for Battery charger of electrical vehicles," IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 2498-2507, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2570800
  32. CREE Inc, 20kW Full Bridge Resonant LLC Converter (Bulletin CRD-20DD09P-2), Durham, North Carolina, USA, [Online] Available: http://www.wolfspeed.com/down loads/dl/file/id/931/product/214/20kw_full_bridge_resonan t_llc_converter.pdf
  33. C. Shi, H. Wang, S. Dusmez, and A. Khaligh, "A SiC-based high-efficiency isolated onboard PEV charger with ultrawide DC-link voltage range," IEEE Trans. Ind. Appl., Vol. 53, No. 1, pp. 501-511, Jan./Feb. 2017. https://doi.org/10.1109/TIA.2016.2605063