• 제목/요약/키워드: Dual Metal Gate (DMG)

검색결과 2건 처리시간 0.014초

InGaAs-based Tunneling Field-effect Transistor with Stacked Dual-metal Gate with PNPN Structure for High Performance

  • Kwon, Ra Hee;Lee, Sang Hyuk;Yoon, Young Jun;Seo, Jae Hwa;Jang, Young In;Cho, Min Su;Kim, Bo Gyeong;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.230-238
    • /
    • 2017
  • We have proposed an InGaAs-based gate-all-around (GAA) tunneling field-effect transistor (TFET) with a stacked dual-metal gate (DMG). The electrical performances of the proposed TFET are evaluated through technology computer-aided design (TCAD) simulations. The simulation results show that the proposed TFET demonstrates improved DC performances including high on-state current ($I_{on}$) and steep subthreshold swing (S), in comparison with a single-metal gate (SMG) TFET with higher gate metal workfunction, as it has a thinner source-channel tunneling barrier width by low workfunction of source-side channel gate. The effects of the gate workfunction on $I_{on}$, the off-state current ($I_{off}$), and S in the DMG-TFETs are examined. The DMG-TFETs with PNPN structure demonstrate outstanding DC performances and RF characteristics with a higher n-type doping concentration in the $In_{0.8}Ga_{0.2}As$ source-side channel region.

Design and Analysis of AlGaN/GaN MIS HEMTs with a Dual-metal-gate Structure

  • Jang, Young In;Lee, Sang Hyuk;Seo, Jae Hwa;Yoon, Young Jun;Kwon, Ra Hee;Cho, Min Su;Kim, Bo Gyeong;Yoo, Gwan Min;Lee, Jung-Hee;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권2호
    • /
    • pp.223-229
    • /
    • 2017
  • This paper analyzes the effect of a dual-metal-gate structure on the electrical characteristics of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors. These structures have two gate metals of different work function values (${\Phi}$), with the metal of higher ${\Phi}$ in the source-side gate, and the metal of lower ${\Phi}$ in the drain-side gate. As a result of the different ${\Phi}$ values of the gate metals in this structure, both the electric field and electron velocity in the channel become better distributed. For this reason, the transconductance, current collapse phenomenon, breakdown voltage, and radio frequency characteristics are improved. In this work, the devices were designed and analyzed using a 2D technology computer-aided design simulation tool.