• Title/Summary/Keyword: Dual Euler

Search Result 23, Processing Time 0.022 seconds

AN APPROACH FOR VECTORIAL MOMENTS IN EUCLIDEAN 3-SPACE

  • Sariaydin, Muhammed T.;Korpinar, Talat
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.187-195
    • /
    • 2020
  • In this paper, we investigate the vectorial moments of Bäcklund transformations of a space curve in 𝔼3. Firstly, it is obtained the vectorial moments which named α𝓖 dual curve, β𝓖 dual curve, and γ𝓖 dual curve of Bäcklund transformations. Then we give the Euler elastic bending energies of these curves. Finally, we provide some examples of α𝓖 dual, β𝓖 dual, and γ𝓖 dual, and their Euler elastic bending energies.

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

On Matroids and Graphs

  • Kim, Yuon Sik
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.29-31
    • /
    • 1978
  • bipartite graph와 Euler graph의 정의를 사용하는 대신 이들 graph가 나타내는 특성을 사용하여 bipartite matroid와 Euler matroid를 정의하고 이들 matroid가 binary일 때 서로 dual 의 관계가 있음을 증명한다. 이 관계를 이용하여 bipartite graph와 Euler graph의 성질을 밝힐수 있다.

  • PDF

A New Dual Hardy-Hilbert's Inequality with some Parameters and its Reverse

  • Zhong, Wuyi
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.493-506
    • /
    • 2009
  • By using the improved Euler-Maclaurin summation formula and estimating the weight coefficients in this paper, a new dual Hardy-Hilbert's inequality and its reverse form are obtained, which are all with two pairs of conjugate exponents (p, q); (r, s) and a independent parameter ${\lambda}$. In addition, some equivalent forms of the inequalities are considered. We also prove that the constant factors in the new inequalities are all the best possible. As a particular case of our results, we obtain the reverse form of a famous Hardy-Hilbert's inequality.

A general solution to structural performance of pre-twisted Euler beam subject to static load

  • Huang, Ying;Chen, Chang Hong;Keer, Leon M.;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • Based on the coupled elastic bending deformation features and relationships between the internal force and deformation of pre-twisted Euler beam, the generalized strain, the equivalent constitutive equation and the equilibrium equation of pre-twisted Euler beam are developed. Based on the properties of the dual-antisymmetric matrix, the general solution of pre-twisted Euler beam is obtained. By comparison with ANSYS solution by using straight Beam-188 element based on infinite approach strategy, the results show that the developed method is available for pre-twisted Euler beam and also provide an accuracy displacement interpolation function for the subsequent finite element analysis. The effect of pre-twisted angle on the mechanical property has been investigated.

Prediction of Dynamic Stability Derivatives Using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 동안정 미계수 예측)

  • Park Soo Hyung;Kim Yoonsik;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.78-84
    • /
    • 2001
  • A dual-time stepping algorithm combined with a parallelized multigrid DADI method is presented to predict the dynamic damping coefficients. The Basic Finner model is chosen to validate the prediction capability of the present unsteady Euler method. The linearity of the pitch- and roll-damping coefficients is shown in the low angular rates and the interesting large drop and stiff increment in transonic region for roll-damping coefficients are explained in detail. Through the analysis for the pressure distributions at Mach number 1.0 to 1.2, the sudden drop results from the normal shock and the stiff increment of roll-damping reflects the transition of the normal shock to the oblique shock. The results also show that the Euler equations can give the damping coefficients with a comparable accuracy.

  • PDF

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.

Fabrication of Dual-mode Ultrasonic Transducer using PZT

  • Kim, Yeon-Bo;Park, Youn-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.914-920
    • /
    • 2002
  • This study investigates the mechanism of a dual mode probe that generates both of the longitudinal and shear waves simultaneously with a single FZT element. Most of conventional ultrasonic probes are constructed to generate either longitudinal or shear waves. After poling, PZT has the hexagonal 6mm crystal symmetry. All possible crystal cuts are checked to determine appropriate Euler transformation angles for efficient excitation of dual modes. For the selected cut, performance of the dual mode element is analyzed through numerical simulation and experiments. Results of the analysis determine the optimal crystal cut for simultaneous generation of P and S waves of equal strength.

Research of Controlled Motion of Dual Fingers with Soft-Tips Grasping (Soft-Tip을 가진 Dual Finger의 파지운동제어에 관한 연구)

  • 박경택;양순용;한현용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.670-673
    • /
    • 2000
  • This paper attempt analysis and computer simulation of dynamics of a set of dual multi-joint fingers with soft-deformable tips which are grasping. Firstly, a set of differential equation describing dynamics of the fingers and object together with geometric constraint of tight area-contacts is formulated by Euler-Lagrange's formalism. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Finally, simulation results are shown and the effects of geometric constraints of area-contact is discussed.

  • PDF

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.