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Abstract. By using the improved Euler-Maclaurin summation formula and estimating

the weight coefficients in this paper, a new dual Hardy-Hilbert’s inequality and its reverse

form are obtained, which are all with two pairs of conjugate exponents (p, q), (r, s) and

a independent parameter λ. In addition, some equivalent forms of the inequalities are

considered. We also prove that the constant factors in the new inequalities are all the

best possible. As a particular case of our results, we obtain the reverse form of a famous

Hardy-Hilbert’s inequality.

1. Introduction and preliminaries

If an, bn ≥ 0, and 0 <
∞∑
n=0

a2n < ∞, 0 <
∞∑
n=0

b2n < ∞, then the well know

Hilbert’s inequality is written in the following form(see Hardy et al. [1. Ch.9]):

(1.1)

∞∑
n=0

∞∑
m=0

ambn
m+ n+ 1

< π{
∞∑
n=0

a2n

∞∑
m=0

b2n}
1
2 ,

where the constant factor π is the best possible. We also have a classical extension
of Hilbert’s inequality with a pair of conjugate exponents as follows [1]:

If an, bn ≥ 0, p > 1,
1

p
+

1

q
= 1((p, q) is called a pair of conjugate exponents),

such that 0 <
∞∑
n=0

apn <∞, 0 <
∞∑
n=0

bqn <∞, then

(1.2)

∞∑
n=0

∞∑
m=0

ambn
m+ n+ 1

<
π

sin(πp )
{
∞∑
n=0

apn}
1
p {
∞∑
m=0

bqn}
1
q ,

where the constant factor
π

sin(πp )
is the best possible.

Inequality (1.2) is the famous Hardy-Hilbert’s inequality, which is important
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in analysis and its applications [2]. In recent years, many results [3]-[9] have been
obtained in the research of Hardy-Hilbert’s inequalities and Hilbert-type inequali-
ties. In 2006, by introducing a pair of conjugate exponents (p, q) and a independent
parameter λ, Yang [10] gave a dual Hardy-Hilbert’s inequality, which is a new ex-
tension of inequality (1.1):

If an, bn ≥ 0, p > 1,
1

p
+

1

q
= 1, 0 < λ ≤ 1, 0 <

∞∑
n=0

(2n + 1)p−1−λapn < ∞,

0 <
∞∑
n=0

(2n+ 1)q−1−λbqn <∞, then

∞∑
n=0

∞∑
m=0

ambn
(2m+ 1)λ + (2n+ 1)λ

<
π

2λ sin(πp )
{
∞∑
n=0

(2n+ 1)p−1−λapn}
1
p {
∞∑
n=0

(2n+ 1)q−1−λbqn}
1
q ,(1.3)

where the constant factor
π

2λ sin(πp )
is the best possible. (1.3) has a equivalent form

as follows:
∞∑
n=0

(2n+ 1)λ(p−1)−1{
∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

}p

< [
π

2λ sin(πp )
]p
∞∑
n=0

(2n+ 1)p−1−λapn,(1.4)

where the constant factor [
π

2λ sin(πp )
]p is still the best possible. Letting λ = 1, we

can find that (1.2) and (1.3) are all the extensions of (1.1). They are all related to

the same best constant factor
π

sin(πp )
and (p, q)-parameters, but different.

By using the improved Euler-Maclaurin summation formula and Beta function
to estimate the weight coefficients, the main objective of This paper is to build a new
extension of (1.3) and its reverse form. Which are all with two pairs of conjugate
exponents (p, q), (r, s) and a independent parameter λ. In addition, some equivalent
forms are considered. We also prove that the constant factors of the inequalities in
this paper are all the best possible. As a particular case of our results, we obtain
the reverse forms of inequality (1.2).

For these purposes, we introduce the improved Euler-Maclaurin summation for-
mula [11] and Hölder

′
s inequality [12] as follows:

The improved Euler-Maclaurin summation formula: If for i = 0, 1, 2, 3,
(−1)if (i)(x) > 0, x ∈ [0,∞), f (i)(∞) = 0, and

∫∞
0
f(x)dx <∞, then we have

(1.5)

∞∑
n=0

f(n) <

∫ ∞
0

f(x)dx+
1

2
f(0)− 1

12
f
′
(0),
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(1.6)

∞∑
n=0

f(n) >

∫ ∞
0

f(x)dx+
1

2
f(0).

Hölder
′
s inequality: Assume that p > 0,

1

p
+

1

q
= 1, F,G ≥ 0 and F ∈

Lp(E), G ∈ Lq(E). We have the following Hölder’s inequalities:
(1) If p > 1, then

(1.7)

∫
E

F (t)G(t)dt ≤ (

∫
E

F p(t)dt)
1
p (

∫
E

Gq(t)dt)
1
p ;

(2) if 0 < p < 1, then

(1.8)

∫
E

F (t)G(t)dt ≥ (

∫
E

F p(t)dt)
1
p (

∫
E

Gq(t)dt)
1
p ,

where the equalities hold if and only if there exist real numbers A and B(A2 +B2 6=
0) such that AF p(t) = BGq(t) a.e. in E.

Lemma 1.1. If s > 1,
1

r
+

1

s
= 1, 0 < λ ≤ 1,

(1.9) fm(x) :=
(2x+ 1)

λ
s−1

(2x+ 1)λ + (2m+ 1)λ
, x ∈ [0,∞),

then fm(x) satisfies (1.5) and (1.6).

Proof. Set g(u) =
1

u
, and um(x) = (2x + 1)λ + (2m + 1)λ, hm(x) = g(um(x)), by

0 < λ ≤ 1, we have hm(x) ∈ C3[0,∞) and (−1)ih
(i)
m (x) > 0 for i=0, 1, 2, 3. And

by
λ

s
− 1 < 0, so fm(x) = hm(x) · (2x + 1)

λ
s−1 satisfies the inequalities (1.5) and

(1.6), the lemma is proved. �

Lemma 1.2. If m ∈ N0, s > 1,
1

r
+

1

s
= 1, 0 < λ ≤ 1, defining Rλ(m, r) as

follows:
(1.10)

Rλ(m, r) :=
1

2λ

∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy +

(2m+ 1)
λ
r (

λ
s−1
3 − 1)

2[1 + (2m+ 1)λ]
− (2m+ 1)

λ
r λ

6[1 + (2m+ 1)λ]2
,

then we have Rλ(m, r) > 0.

Proof. Using integration by parts, we have∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy =

s(2m+ 1)λ−
λ
s

1 + (2m+ 1)λ
+

s2

1 + s

∫ 1

(2m+1)λ

0

dy
1
s+1

(1 + y)2

>
s(2m+ 1)

λ
r

1 + (2m+ 1)λ
+

s2(2m+ 1)
λ
r

(1 + s)[1 + (2m+ 1)λ]2
.(1.11)
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Then in view of (1.10) and s > 1, for 0 < λ ≤ 1, we have

Rλ(m, r) >
(2m+ 1)

λ
r

2[1 + (2m+ 1)λ]
(
s

λ
+

λ
s − 1

3
− 1) +

(2m+ 1)
λ
r

2[1 + (2m+ 1)λ]2
(

s2

λ(1 + s)
− λ

3
),

by

s

λ
+

λ
s − 1

3
− 1 =

(3s− λ)(s− λ)

3sλ
> 0,

s2

λ(1 + s)
− λ

3
=

3s2 − λ2(1 + s)

3λ(1 + s)
≥ 3s2 − (1 + s)

3λ(1 + s)
> 0.

The lemma is proved. �

Lemma 1.3. If m ∈ N0, r > 1,
1

r
+

1

s
= 1, and 0 < λ ≤ 1, defining ωλ(m, r) and

ωλ(n, s) as follows:

ωλ(m, r) :=

∞∑
n=0

(2m+ 1)
λ
r

(2m+ 1)λ + (2n+ 1)λ
1

(2n+ 1)1−
λ
s

,(1.12)

ωλ(n, s) :=

∞∑
m=0

(2n+ 1)
λ
s

(2m+ 1)λ + (2n+ 1)λ
1

(2m+ 1)1−
λ
r

.(1.13)

Then we have

(1)ωλ(m, r) =
1

2m+ 1

∞∑
n=0

[( 2n+1
2m+1 )λ]

1
s−

1
λ

( 2n+1
2m+1 )λ + 1

:=
1

2m+ 1

∞∑
n=0

hm(n,
1

s
),(1.14)

(2)ωλ(m, r) <
1

2λ
B(

1

s
,

1

r
) =

π

2λ sin(πs )
:= kλ(s),(1.15)

(3)ωλ(n, s) <
π

2λ sin(πr )
:= kλ(r) = kλ(s).(1.16)

Proof. (1) ωλ(m, r) = (2m+1)
λ
r

∞∑
n=0

( 2n+1
2m+1 )

λ
s−1(2m+ 1)

λ
s−1−λ

( 2n+1
2m+1 )λ + 1

=
1

2m+ 1

∞∑
n=0

hm(n,
1

s
),

(2) By the definition of (1.9) and using Lemma 1.1 and (1.5), we have

ωλ(m, r) = (2m+ 1)
λ
r

∞∑
n=0

fm(n)

< (2m+ 1)
λ
r [

∫ ∞
0

fm(x)dx+
1

2
fm(0)− 1

12
f
′

m(0)].(1.17)
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Setting y = (
2x+ 1

2m+ 1
)λ, we have d(

2x+ 1

2m+ 1
) =

1

λ
y

1
λ−1dy and

∫ ∞
0

fm(x)dx =
1

2λ(2m+ 1)
λ
r

∫ ∞
1

(2m+1)λ

y
1
s−1

1 + y
dy

=
1

2λ(2m+ 1)
λ
r

[B(
1

s
,

1

r
)−

∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy].(1.18)

In view of

fm(0) =
1

1 + (2m+ 1)λ
,(1.19)

f
′

m(0) =
−2λ

[1 + (2m+ 1)λ]2
+

2(λs − 1)

1 + (2m+ 1)λ
,

by (1.17), (1.10) and Lemma 1.2, we find

ωλ(r,m) = (2m+ 1)
λ
r

∞∑
n=0

fm(n) <
B( 1

s ,
1
r )

2λ
−Rλ(m, r) <

B( 1
s ,

1
r )

2λ
.

we have (1.15), so does (1.16). The lemma is proved. �

Lemma 1.4. Let r > 1,
1

r
+

1

s
= 1, 0 < λ ≤ 1. And let ωλ(m, r), kλ(s) be defined

by (1.12) and (1.15), respectively. Let

(1.20) ηλ(m) :=
1

2kλ(s)
{ 1

λ

∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy − (2m+ 1)

λ
r

1 + (2m+ 1)λ
},

then we have

(1) ωλ(m, r) > kλ(s)[1− ηλ(m)],(1.21)

(2) 0 < ηλ(m) < θλ(r) < 1, (θλ(r) =
1

2λkλ(s)

∫ 1

0

y
1
s−1

1 + y
dy),(1.22)

(3) ηλ(m) = O(
1

(2m+ 1)
λ
s

) (m→∞).(1.23)

Proof. By forms (1.9), (1.12), Lemma 1.1 and forms (1.6), (1.18) and (1.19), we
have

ωλ(m, r) = (2m+ 1)
λ
r

∞∑
n=0

fm(n) > (2m+ 1)
λ
r [

∫ ∞
0

fm(x)dx+
1

2
fm(0)]

=
1

2λ

π

sin(πs )
− 1

2λ

∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy +

(2m+ 1)
λ
r

2[1 + (2m+ 1)λ]
.



498 Wuyi Zhong

(1.21) is valid. And in view of (1.11), by

∫ 1

(2m+1)λ

0

y
1
s−1

1 + y
dy =

s(2m+ 1)λ−
λ
s

1 + (2m+ 1)λ
+

s2

1 + s

∫ 1

(2m+1)λ

0

dy
1
s+1

(1 + y)2
,

we have

(1.24) 0 <
(2m+ 1)

λ
r

2λkλ(s)[1 + (2m+ 1)λ]
(s− λ) < ηλ(m) <

1

2λkλ(s)

∫ 1

0

y
1
s−1

1 + y
dy,

and

(1.25) ηλ(m) <
1

2λkλ(s)

∫ 1

(2m+1)λ

0

y
1
s−1dy =

s

2λkλ(s)

1

(2m+ 1)
λ
s

.

The forms (1.22) and (1.23) are valid. The lemma is proved. �

Lemma 1.5. Let p > 1, r > 1,
1

p
+

1

q
= 1,

1

r
+

1

s
= 1, and 0 < λ ≤ 1,

0 < ε <
pλ

r
, and let kλ(s) be defined by (1.15). Set that ãn := (2n + 1)

λ
r−

ε
p−1,

b̃n := (2n+ 1)
λ
s−

ε
q−1,

I1 := ε{
∞∑
n=0

(2n+ 1)p(1−
λ
r )−1ãpn}

1
p · {

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1b̃qn}

1
q ,

I2 := ε

∫ ∞
0

∫ ∞
0

(2x+ 1)
λ
r−

ε
p−1(2y + 1)

λ
s−

ε
q−1

(2x+ 1)λ + (2y + 1)λ
dxdy,

then we have

(1) I1 < ε(1 +
1

2ε
),(1.26)

(2) I2 ≥
1

2
kλ(s) + ◦(1) (ε→ 0+).(1.27)

Proof. By the definitions of ãn and b̃n, using the strictly monotone decrement of
the sequence “(2n+ 1)−1−ε, n ∈ N”, we have

I1 = ε{
∞∑
n=0

(2n+ 1)−1−ε}
1
p · {

∞∑
n=0

(2n+ 1)−1−ε}
1
q = ε

∞∑
n=0

(2n+ 1)−1−ε

= ε{1 +

∞∑
n=1

(2n+ 1)−1−ε} < ε{1 +

∫ ∞
0

(2x+ 1)−1−εdx}

= ε{1− 1

2ε
(2x+ 1)−ε|∞0 }.
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(1.26) holds. Setting u = (
2x+ 1

2y + 1
)λ, by 0 < ε <

pλ

r
, we have

I2 =
ε

2λ

∫ ∞
0

(2y + 1)−1−ε[

∫ ∞
1

(2y+1)λ

u
1
r−

ε
pλ−1

1 + u
du]dy

=
ε

2λ

∫ ∞
0

(2y + 1)−1−ε[

∫ ∞
0

u
1
r−

ε
pλ−1

1 + u
du−

∫ 1

(2y+1)λ

0

u
1
r−

ε
pλ−1

1 + u
du]dy

≥ 1

4λ
B(

1

r
− ε

pλ
,

1

s
+

ε

pλ
)− ε

2λ

∫ ∞
0

(2y + 1)−1[

∫ 1

(2y+1)λ

0

u
1
r−

ε
pλ−1du]dy

=
1

4λ
B(

1

r
− ε

pλ
,

1

s
+

ε

pλ
)− ε

4λ2( 1
r −

ε
pλ )2

.

Letting ε→ 0+, we have (1.27). The lemma is proved. �

2. Main results

Theorem 2.1. If p > 1, r > 1,
1

p
+

1

q
= 1,

1

r
+

1

s
= 1, 0 < λ ≤ 1, and an, bn ≥ 0,

such that 0 <
∞∑
n=0

(2n+1)p(1−
λ
r )−1apn <∞, 0 <

∞∑
n=0

(2n+1)q(1−
λ
s )−1bqn <∞, setting

(2.1) Hλ(am, bn) :=

∞∑
n=0

∞∑
m=0

ambn
(2m+ 1)λ + (2n+ 1)λ

,

then we have

(2.2) Hλ(am, bn) < kλ(s){
∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm}

1
p · {

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn}

1
q ,

where, the constant factor kλ(s) =
π

2λ sin(πs )
is the best possible.

Proof. By p > 1, using Hölder
′
s inequality (1.7), then we have

Hλ(am, bn)

=

∞∑
n=0

∞∑
m=0

1

(2m+ 1)λ + (2n+ 1)λ
[
(2m+ 1)(1−

λ
r )/q

(2n+ 1)(1−
λ
s )/p

am][
(2n+ 1)(1−

λ
s )/p

(2m+ 1)(1−
λ
r )/q

bn]

≤ {
∞∑
m=0

[

∞∑
n=0

(2m+ 1)
λ
r

(2m+ 1)λ + (2n+ 1)λ
1

(2n+ 1)1−
λ
s

](2m+ 1)p(1−
λ
r )−1apm}

1
p

×{
∞∑
n=0

[

∞∑
m=0

(2n+ 1)
λ
s

(2m+ 1)λ + (2n+ 1)λ
1

(2m+ 1)1−
λ
r

](2n+ 1)q(1−
λ
s )−1bqn}

1
q

= {
∞∑
m=0

ωλ(m, r)(2m+ 1)p(1−
λ
r )−1apm}

1
p · {

∞∑
n=0

ωλ(n, s)(2n+ 1)q(1−
λ
s )−1bqn}

1
q ,(2.3)
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where ωλ(m, r), ωλ(n, s) are defined by (1.12) and (1.13), respectively. In view of
(1.15) and (1.16), we have (2.2).

If there exists a positive number K ≤ kλ(r), such that (2.2) is still valid when we

replace kλ(r) by K, in particular, for 0 < ε <
pλ

r
, setting: ãm := (2m + 1)

λ
r−

ε
p−1,

b̃n := (2n+ 1)
λ
s−

ε
q−1, m,n ∈ N , we have

εHλ(ãm, b̃n) < Kε{
∞∑
n=0

(2n+ 1)p(1−
λ
r )−1ãpn}

1
p · {

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1b̃qn}

1
q = KI1.

But by (1.26), (1.27), we have

K · (ε+
1

2
) > KI1 > εHλ(ãm, b̃n)

≥ ε

∫ ∞
0

∫ ∞
0

(2x+ 1)
λ
r−

ε
p−1(2y + 1)

λ
s−

ε
q−1

(2x+ 1)λ + (2y + 1)λ
dxdy

= I2 ≥
1

2
kλ(r) + ◦(1), (ε→ 0+).

Letting ε→ 0+, we have K ≥ kλ(r), it follows that K = kλ(r). Hence the constant
factor kλ(r) in (2.2) is the best possible. The theorem is proved. �

Theorem 2.2. Let p > 1, r > 1,
1

p
+

1

q
= 1,

1

r
+

1

s
= 1, 0 < λ ≤ 1, and am ≥ 0,

such that 0 <
∞∑
m=0

(2m+1)p(1−
λ
r )−1apm <∞, and let kλ(r) be defined by (1.16), then

we have

∞∑
n=0

(2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p

< kpλ(r)

∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm,(2.4)

where the constant factor kpλ(r) is the best possible. Inequality (2.4) is equivalent to
(2.2).

Proof. Since 0 <
∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm <∞, then there exists k0 ∈ N , such for

any K > k0, that 0 <
K∑
m=0

(2m+ 1)p(1−
λ
r )−1apm <∞, then by setting

bn(K) = (2n+ 1)
pλ
s −1[

K∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p−1,
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and using Hölder
′
s inequality (1.7) as in (2.3), we have

0 <

K∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn(K)

=

K∑
m=0

(2n+ 1)
pλ
s −1[

K∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p

=

K∑
n=0

K∑
m=0

ambn(K)

(2m+ 1)λ + (2n+ 1)λ

< kλ(r){
K∑
n=0

(2n+ 1)p(1−
λ
r )−1apn}

1
p {

K∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn(K)}

1
q .(2.5)

Hence we have

{
K∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn(K)}

1
p = {

K∑
m=0

(2n+ 1)
pλ
s −1[

K∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p}
1
p

< kλ(r){
K∑
n=0

(2n+ 1)p(1−
λ
r )−1apn}

1
p .(2.6)

Letting K → ∞, it follows that 0 <
∞∑
n=0

(2n + 1)q(1−
λ
s )−1bqn(∞) < ∞ . Hence by

(2.2), (2.5) keeps the form of strict inequality when K → ∞, So does (2.6). Thus
inequality (2.4) is valid.

On the other hand, if (2.4) is valid, by Hölder
′
s inequality (1.7), we have

Hλ(am, bn)

=

∞∑
n=0

[(2n+ 1)
λ
s−

1
p

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

][(2n+ 1)
1
p−

λ
s bn]

≤ {
∞∑
n=0

(2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p}
1
p {
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn}

1
q ,

(2.7)

where, the notation Hλ(am, bn) is defined by (2.1). Then by (2.4), we obtain (2.2).
Inequality (2.4) is equivalent to (2.2).

Since the constant factor in (2.2) is the best possible, we may show that the
constant factor in (2.4) is also the best possible by (2.7). The theorem is proved.

�

Theorem 2.3. If 0 < p < 1, r > 1,
1

p
+

1

q
= 1,

1

r
+

1

s
= 1, 0 < λ ≤ 1, and an,
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bn ≥ 0, such that 0 <
∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm <∞, 0 <

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn <

∞, then we have the reverse inequality:
(2.8)

Hλ(am, bn) > kλ(r){
∞∑
m=0

[1−ηλ(m)](2m+1)p(1−
λ
r )−1apm}

1
p {
∞∑
n=0

(2n+1)q(1−
λ
s )−1bqn}

1
q ,

where, the notation Hλ(am, bn), ηλ(m) are defined by (2.1) and (1.20), respectively.
And the factor ηλ(m) satisfies (1.22) and (1.23). The constant factor kλ(r) =

π

2λ sin(πr )
is the best possible.

Proof. By 0 < p < 1, using the reverse Hölder
′
s inequality (1.8), we have

Hλ(am, bn)

=

∞∑
n=0

∞∑
m=0

1

(2m+ 1)λ + (2n+ 1)λ
[
(2m+ 1)(1−

λ
r )/q

(2n+ 1)(1−
λ
s )/p

am][
(2n+ 1)(1−

λ
s )/p

(2m+ 1)(1−
λ
r )/q

bn]

≥ {
∞∑
m=0

[

∞∑
n=0

(2m+ 1)
λ
r

(2m+ 1)λ + (2n+ 1)λ
1

(2n+ 1)1−
λ
s

](2m+ 1)p(1−
λ
r )−1apm}

1
p

×{
∞∑
n=0

[

∞∑
m=0

(2n+ 1)
λ
s

(2m+ 1)λ + (2n+ 1)λ
1

(2m+ 1)1−
λ
r

](2n+ 1)q(1−
λ
s )−1bqn}

1
q

= {
∞∑
m=0

ωλ(m, r)(2m+ 1)p(1−
λ
r )−1apm}

1
p · {

∞∑
n=0

ωλ(n, s)(2n+ 1)q(1−
λ
s )−1bqn}

1
q ,(2.9)

where, factors ωλ(m, r), ωλ(n, s) are defined by (1.12) and (1.13), respectively. In
view of (1.21) and (1.16), by q < 0(0 < p < 1), (2.8) is valid.

If there exists a positive number K ≥ kλ(r), such that (2.8) is still valid when we

replace kλ(r) by K, in particular, for 0 < ε < −qλ
r

, setting: ãm = (2m+ 1)
λ
r−

ε
p−1,

b̃n = (2n+ 1)
λ
s−

ε
q−1,m, n ∈ N , using (1.23), we have

Hλ(ãm, b̃n)

> K{
∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1ãpm}

1
p {
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1b̃qn}

1
q

= K{
∞∑
m=0

[1− ηλ(m)](2m+ 1)−1−ε}
1
p {
∞∑
n=0

(2n+ 1)−1−ε}
1
q

= K{
∞∑
m=0

1

(2m+ 1)1+ε
−
∞∑
m=0

O(
1

(2m+ 1)1+ε+
λ
s

)}
1
p {
∞∑
n=0

1

(2n+ 1)1+ε
}

1
q

= K

∞∑
m=0

1

(2m+ 1)1+ε
{1− [

∞∑
m=0

1

(2m+ 1)1+ε
]−1

∞∑
m=0

O(
1

(2m+ 1)1+ε+
λ
s

)}
1
p ,(2.10)
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On the other hand, by (1.14) and (1.15), we have

Hλ(ãm, b̃n) =

∞∑
m=0

∞∑
n=0

(2m+ 1)
λ
r−

ε
p−1(2n+ 1)

λ
s−

ε
q−1

(2m+ 1)λ + (2n+ 1)λ

=

∞∑
m=0

(2m+ 1)−ε−2
∞∑
n=0

[( 2n+1
2m+1 )λ]

1
s−

ε
qλ−

1
λ

( 2n+1
2m+1 )λ + 1

=

∞∑
m=0

(2m+ 1)−ε−1
1

2m+ 1

∞∑
n=0

hm(n,
1

s
− ε

qλ
)

<
1

2λ
B(

1

s
− ε

qλ
,

1

r
+

ε

qλ
)

∞∑
m=0

1

(2m+ 1)1+ε
(2.11)

In view of (2.10) and (2.11), we have

1

2λ
B(

1

s
− ε

qλ
,

1

r
+

ε

qλ
) > K{1− [

∞∑
m=0

1

(2m+ 1)1+ε
]−1

∞∑
m=0

O(
1

(2m+ 1)1+ε+
λ
s

)}
1
p ,

letting ε → 0+, we have K ≤ kλ(r), then K = kλ(r). That is what the constant
factor kλ(r) is the best possible. The theorem is proved. �

Theorem 2.4. Let 0 < p < 1, r > 1,
1

p
+

1

q
= 1,

1

r
+

1

s
= 1, 0 < λ ≤ 1, then we

have

(1) If an ≥ 0, 0 <
∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm <∞, then

∞∑
n=0

(2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p

> kpλ(r)

∞∑
m=0

[1− ηλ(m)](2m+ 1)
pλ
s −1apm,(2.12)

(2) If bn ≥ 0, 0 <
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn <∞, then

∞∑
m=0

[
(2m+ 1)1−p(1−

λ
r )

1− ηλ(m)
]q−1[

∞∑
n=0

bn
(2m+ 1)λ + (2n+ 1)λ

]q

< kqλ(r)

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn,(2.13)

where, inequalities (2.12) and (2.13) are both equivalent to inequality (2.8). The
factor ηλ(m) is defined by (1.20), kλ(r) is defined by (1.16). The constant factors
kpλ(r) and kqλ(r) are both the best possible.
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Proof. (1) Letting bn := (2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+1)λ+(2n+1)λ

]p−1, using the notation

(2.1), by (2.9), (1.21), (1.15) and q < 0, we have

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn

=

∞∑
n=0

(2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p = Hλ(am, bn)

≥ kλ(r){
∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm}

1
p {
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn}

1
q .(2.14)

It follows

(2.15)

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn ≥ k

p
λ(r)

∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm.

If
∞∑
n=0

(2n + 1)q(1−
λ
s )−1bqn = ∞, by 0 <

∞∑
m=0

(2m + 1)p(1−
λ
r )−1apm < ∞ and (1.22),

(2.15) takes the strict inequality, then inequality (2.12) holds. If
∞∑
n=0

(2n+1)q(1−
λ
s )−1bqn <∞, (2.14) is a strict inequality by (2.8), so does (2.15). we

have (2.12). And it follows that (2.8) implies (2.12). On the other hand, by (2.12)
and q < 0(0 < p < 1), using Hölder

′
s inequality (1.8), we have

Hλ(am, bn) =

∞∑
n=0

[(2n+ 1)
λ
s−

1
p

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

][(2n+ 1)
1
p−

λ
s bn]

≥ {
∞∑
n=0

(2n+ 1)
pλ
s −1[

∞∑
m=0

am
(2m+ 1)λ + (2n+ 1)λ

]p}
1
p

×{
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn}

1
q .(2.16)

then (2.8) holds . It follows that (2.8) and (2.12) are equivalent.

(2) letting am = [
(2m+ 1)1−p(1−

λ
r )

1− ηλ(m)

∞∑
n=0

bn
(2m+ 1)λ + (2n+ 1)λ

]q−1(> 0), using

Hölder
′
s inequality (1.8), we have

0 <

∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm

=

∞∑
m=0

[
(2m+ 1)1−p(1−

λ
r )

1− ηλ(m)
]q−1[

∞∑
n=0

bn
(2m+ 1)λ + (2n+ 1)λ

]q = Hλ(am, bn)

≥ kλ(r){
∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm}

1
p {
∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn}

1
q .(2.17)
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In view of 0 < p < 1, q < 0, we find

(2.18)

∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm ≤ k

q
λ(r)

∞∑
n=0

(2n+ 1)q(1−
λ
s )−1bqn <∞.

By (1.22), it follows

0 <

∞∑
m=0

(2m+ 1)p(1−
λ
r )−1apm ≤

1

1− θλ(r)

∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm <∞,

and shows that (2.8) is valid, hence (2.17) takes the strict forms. So does (2.18).
(2.13) holds . So does that (2.8) implies (2.13). On the other hand, by q < 0(0 <
p < 1), using the reverse Hölder

′
s inequality (1.8), we have

Hλ(am, bn)

=

∞∑
m=0

{[ 1− ηλ(m)

(2m+ 1)1−p(1−
λ
r )

]
1
p am}{[

(2m+ 1)1−p(1−
λ
r )

1− ηλ(m)
]
1
p

×
∞∑
n=0

bn
(2m+ 1)λ + (2n+ 1)λ

}

≥ {
∞∑
m=0

[1− ηλ(m)](2m+ 1)p(1−
λ
r )−1apm}

1
p(2.19)

×{
∞∑
m=0

[
(2m+ 1)1−p(1−

λ
r )

1− ηλ(m)
]q−1[

∞∑
n=0

bn
(2m+ 1)λ + (2n+ 1)λ

]q}
1
q .

By (2.13), we have (2.8). It follows that (2.8) is equivalent to (2.13).
If the constant factor kpλ(r) or kqλ(r) in (2.12) or (2.13) is not the best possible,

by (2.16) or (2.19), we can get a contradiction that the constant factor kλ(r) in
(2.8) is not the best possible. The theorem is proved. �

3. A particular case

For r = s = 2, λ = 1, by (2.8), (2.12) and (2.13), we have

Corollary 3.1. If 0 < p < 1,
1

p
+

1

q
= 1, then we have following equivalent

inequalities

∞∑
n=0

∞∑
m=0

ambn
m+ n+ 1

> π{
∞∑
m=0

[1− η1(m)](2m+1)
p
2−1apm}

1
p {
∞∑
n=0

(2n+ 1)
q
2−1bqn}

1
q ,

(3.1)

∞∑
n=0

(2n+ 1)
p
2−1[

∞∑
m=0

ambn
m+ n+ 1

]p > πp
∞∑
m=0

[1− η1(m)](2m+ 1)
p
2−1apm,(3.2)
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(3.3)

∞∑
m=0

[
(2m+ 1)1−

p
2

1− η1(m)
]q−1[

∞∑
n=0

bn
m+ n+ 1

]q < πq
∞∑
n=0

(2n+ 1)
q
2−1bqn,

where the constant factors π, πp, πq are all the best possible. By (1.20), (1.24)

and (1.25), the factor η1(m) =
1

π
{
∫ 1

2m+1

0
y−

1
2

1+y dy −
(2m+1)

1
2

2(m+1) } satisfies inequality:

(2m+ 1)
1
2

2π(m+ 1)
< η1(m) <

2

π(2m+ 1)
1
2

. Inequalities (3.1) is a reverse forms of (1.2).

(3.2) and (3.3) are both equivalent to (3.1).

Remark 3.2. For r = p, s = q, inequality (2.2) and (2.4) reduce to (1.3) and (1.4).
It follows that inequalities (2.2) and (2.4) are the generalizations of (1.3) and (1.4),
respectively.
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