• Title/Summary/Keyword: Drying Shrinkage Crack

Search Result 132, Processing Time 0.026 seconds

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

A Study on the Strength and Drying Shrinkage Crack Control Properties of Polypropyl (폴리프로필렌 합성섬유보강 콘크리트의 강도 특성 및 건조수축균열제어 특성에 관한 연구)

  • 오병환;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.146-152
    • /
    • 1996
  • Polypropylene fiber reinforced mortar and concrete as civil material or architectural material have been used in America and British etc, and have been researched. Polypropylene fibers have many advantages in many points ; in economical costs, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. This study has been performed to obtain the properties of polypropylene fiber reinforced concrete such as compressive strength, flexural strength, toughness, slump, drying shrinkage crack and drying shrinkage characteristics. The test variables are fiber contents, fiber length, fiber types, and so on. From the results of this study, we can expect the effects of the admixtures of polypropylene fiber about strength and drying shrinkage properties in concrete and mortar.

  • PDF

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

An Experiment Study on Drying Shrinkage Reduction of Concrete Slab (슬래브 구조물용 콘크리트의 건조수축 저감에 관한 연구)

  • Sohn Yu Shin;Lee Seung Hoon;Park Chan Kyu;Kim Gyu Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.592-595
    • /
    • 2004
  • This Study discusses the properties of drying shrinkage of concrete slab with W/B, water content, fiber and anti-shrinkage agent. According to results, drying shrinkage is reduced with decrease of water content and W/B. Also, compared with plain concrete, drying shrinkage is reduced by using of fiber, anti-shrinkage agent and adding ratio of anti - shrinkage agent. Therefore, in the range of workability if water content and W/B are reduced and using of fiber and anti-shrinkage agent are performed properly, crack by drying shrinkage can be prevented effectively.

  • PDF

An Experimental Study on the Effect if Fiber Reinforced on CFRD Face Slab Concrere (CFRD 차수벽콘크리트에서의 섬유보강효과에 관한 실험적 연구)

  • 최세진;임정열;김완영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.122-125
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the effect of fiber reinforced on CFRD face slab concrete. for this purpose, it was investigated and analyzed the engineering properties of plain concrete and polypropylene fiber reinforced concrete (PFRC) according to test result ; the test include slump, air content, compressive strength, tensile strength, drying shrinkage and permeability etc. As the results, it was found permeability and drying shrinkage of PFRC less than that of plain concrete.

  • PDF

The Control Methods of Crack on Concrete with Fiber reinforced and Finishing (섬유종류 및 마감방법에 따른 무근콘크리트의 균열제어 방법)

  • Lee, Tae-Gyu;Kim, Gyu-Yong;Kang, Yeon-Woo;Kim, Soon-Mook;Kim, Soo-Bong;Jung, Jae-Yung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.260-261
    • /
    • 2014
  • When press concrete with high W/B was hardened, it should consider a crack to make stress by drying shrinkage. For control of crack, wire-mesh used to reinforce concrete in site. Actually, it reported failure case in lack of quality control. This study conducted experiment to apply fiber reinforced press concrete. it was evaluated on fresh property, compressive strength and shrinkage crack of press concrete with fiber.

  • PDF

A Study on the Development of Flat-Ring Type Restrained Test Method and Performance Evaluation for Evaluating Shrinkage Cracking Properties of Concrete in Early Age (콘크리트 초기 수축균열특성 평가를 위한 판상-링형 구속시험방법의 성능평가에 관한 연구)

  • Kim, Gyu-Yong;Choi, Hyeong-Gil;Lee, Eui-Bae;Nam, Jeong-Soo;Han, Min-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.188-196
    • /
    • 2009
  • In Concrete, shrinkages occur like plastic shrinkage and drying shrinkage in the early age because of evaporation and transfer of moisture. Within the country, the crack test standardized by KS is used to test the drying shrinkage of the concrete by using the restricted drying shrinkage of Dumbbell type mold, but this test is for the cracking-point and the restricted shrinkage stress. Thus it is difficult to valuate the crack quantitative test. In this study, it is intended to develop the Flat-ring type restrained test method for the shrinkage deformation movement of the concrete and to provide the quantitative data for evaluating the cracks in concrete. And it suggest the proper specimen diameter and quantitative test method about shrinkage crack properties on Flat-ring type restrained test method. And Verified the suitability.

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

An Experimental Study on the Shrinkage Properties of Ultra-Low Shrinkage Concrete (초 저수축 콘크리트의 수축특성에 관한 실험적 연구)

  • Seo, Tae-Seok;Kim, Kang-Min;Lee, Hyun-Seunh
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.148-149
    • /
    • 2021
  • In Japan, ultra-low shrinkage concrete has been developed and commercialized to control drying shrinkage cracks to the limit. However, in the case of South Korea, the study on this technology has not yet been conducted in earnest. Therefore, the study was conducted for the development of ultra-low shrinkage concrete to control the drying shrinkage crack of concrete to the limit, and in this study, after determining the mixture of ultra-low shrinkage concrete, a wall type mock-up specimen was produced to observe the shrinkage behavior of ultra-low shrinkage concrete.

  • PDF

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.