• Title/Summary/Keyword: Dry storage cask

Search Result 50, Processing Time 0.026 seconds

Status Analysis for the Confinement Monitoring Technology of PWR Spent Nuclear Fuel Dry Storage System (경수로 사용후핵연료 건식저장시스템의 격납감시 기술현황 분석)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Leading national R&D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

HEAT REMOVAL TEST USING A HALF SCALE STORAGE CASK

  • Bang, K.S.;Lee, J.C.;Seo, K.S.;Cho, C.H.;Lee, S.J.;Kim, J.M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • Spent nuclear fuel generated at nuclear power plants must be safely stored during interim storage periods. A dry storage cask to safely store the spent nuclear fuel should be able to adequately emit the decay heat from the spent nuclear fuel. Therefore, heat removal tests using a half scale dry storage cask have been performed to estimate the heat transfer characteristics of a dry storage cask under normal, off-normal, and accident conditions. In the normal condition, the heat transfer rate to an ambient atmosphere by convective air through a passive heat removal system reached 83%. Accordingly, the passive heat removal system is designed well and works adequately. In the off-normal condition, the influence of a half blockage in the inlet on the temperature appears minimal. In the accident condition, the temperature rose for 12 hours after the accident, but the temperature rise steadied after 36 hours.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Technology for AR Dry Storage of Spent Fuel (원전부지내 사용후핵연료 건식저장기술 분석)

  • Lee, Heung-Young;Yoon, Suk-Jung;Lee, Ik-Hwan;Seo, Ki-Seog
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.313-327
    • /
    • 1996
  • As an at-reactor(AR) storage method o( spent fuel, there are horizontal concrete module type, metal storage cask type, concrete storage cask type, dual purpose (transportation and storage) cask type and multi-purpose (transportation, storage and disposal) cask type. All other types except multi-purpose one have been already used for AR dry storage of spent fuels after obtaining operation license in various foreign countries. Also the development of multi-purpose type has been continued for operation license. In America, Japan, Germany, Canada, Spain, Switzerland, and Czech Republic, etc., AR dry storage facilities are under operation or on propulsion, and spent fuels are transported to interim storage facility or reprocessing plant after dry storage at reactor temporarily. At Wolsung site, in case of Korea, concrete silo type has already been introduced, and it is believed to be inevitable to store spent fuels at reactor temporarily, considering the reality that storage capacity of spent fuel is approaching to the limit in some nuclear power plants. In this report, the system characteristics, design requirements, technical standards and status of AR storage system, which is suitable for domestic site such as Kori, have been studied. In most cases, the licensed period of storage cask is limited up to 20 years and the integrity of material and maintenance of leaktightness are required during the whole service life.

  • PDF

Design and Structural Safety Evaluation of Transfer Cask for Dry Storage System of PWR Spent Nuclear Fuel

  • Taehyung Na;Youngoh Lee;Taehyeon Kim;Yongdeog Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.503-516
    • /
    • 2023
  • A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.

Seismic Response Tests of 1/8 Scale Model for a Spent Fuel Dry Storage Cask (사용후 연료 건식저장요기 1/8 규모 축소모형 지진응답시험)

  • Lee, J.H.;Koo, G.H.;Seo, G.S.;Lee, H.Y.;Choi, B.I.;Yeom, S.H.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.55-61
    • /
    • 2005
  • The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 Elcentro earthquake. This paper focuses on the seismic response test data generation to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. A simplified cask model is used to take into account the variations in seismic load magnitude and cask/bed interface friction. The test results show that the model gives an overturning response for an extreme condition.

  • PDF

REVIEW AND FUTURE ISSUES ON SPENT NUCLEAR FUEL STORAGE

  • Saegusa, T.;Shirai, K.;Arai, T.;Tani, J.;Takeda, H.;Wataru, M.;Sasahara, A.;Winston, P.L.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.237-248
    • /
    • 2010
  • The safety of metal cask and concrete cask storage technology has been verified by CRIEPI through several research programs on demonstrative testing for the interim storage of spent fuel. The results have been reflected in the safety requirements for dry casks issued by NISA/METI (Nuclear and Industrial Safety Agency, Ministry of Economy, Trade and Industry) of the Japanese government. On top of that, spent fuel integrity has been studied by the Japan Nuclear Energy Safety Organization (JNES). This paper reviews these research programs. Future issues include the long-term integrity of cask components and high burn-up spent fuel.

Analytical approach on nonlinear vibration of dry cask storage systems

  • Bayat, M.;Soltangharaei, V.;Ziehl, P.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • In this paper, a novel analytical method, Max-Min Approach (MMA), has been presented and applied to consider the nonlinear vibration of dry cask storage systems. The nonlinear governing equation of the structure has been developed using the shell theory. The MMA results are compared with numerical solutions derived by Runge-Kutta's Method (RKM). The results indicate a satisfying agreement between MMA and numerical solutions. Parametric studies have been conducted on the nonlinear frequency of dry casks. The phase-plan of the problem is also presented and discussed. The proposed approach can potentially ca be extended to highly nonlinear problems.

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

The Test for Verifying a Tip-Over Analysis of a Dry Storage Cask (건식저장용기에 대한 전복해석의 검증시험)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Cho Chun-Hyung;Jang Hyun-Kee;Choi Byung-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.245-253
    • /
    • 2006
  • A test of the 1/3 scale model was conducted to verify the tip-over analysis of a dry. concrete storage cask under a hypothetical accident condition. The tip-over analysis was executed using the velocity at each point as the initial conditions of the model just before the impact. The initial velocity was determined from the initial angular velocity, which would make the equivalent kinetic energy to the potential energy. To confirm the structural integrity of the canister, the visual testing and the non-detective testings such as Liquid Penetrant testing and Ultrasonic Testing were conducted. The lid of a storage cask was plastically deformed near the impact point. The structural integrity of storage cask was maintained. To verify the tip-over analysis the strains and the accelerations acquired by the tip-over test were compared with those by the analyses. The results of the analysis were larger than the test results about two times.

  • PDF