• Title/Summary/Keyword: Dry river

Search Result 451, Processing Time 0.043 seconds

A successful province of agriculturalwater-saving: Gansu

  • Bin, Jiang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.194-194
    • /
    • 2016
  • Gansu, located in the northwestern region, is a typical agricultural province of arid, semiarid in China. The shortage of water resources is the biggest obstacle of Gansu Province's development, and the dry farming water-saving is the eternal theme of Gansu agricultural sustainable development. In recent years, intensify reform in Gansu, has walked out a successful way in the agricultural water-saving. Using the integrated river basin governance as opportunity, the total water-using quantity was regarded as rigidity to retrain, distributed to counties (districts), irrigated areas, towns, associations, groups step by step. Agricultural water price was substantially increased, with the surface water price from about $0.1RMB/m^3$ to more than $0.2 RMB/m^3$, and the ground water from zero to more than $0.1RMB/m^3$. Simultaneously, the difference water prices and over-quota water progression price markup were carried out. The transaction of water rights was encouraged to impel the peasant to establish the consciousness of saving-water. The regulatory documents were formulated to standardize the scope, condition, mode, program etc. of agriculture water-rights transaction, to guarantees the transaction of water rights is carries out in order. The pattern of farming was optimized and adjusted, reducing the high water-consumption crop, increasing economic crops with high benefit and low water-consumption, developing industrialized agricultures such as green house. The relative engineering and measuring facility were comprehensively improved, with the anti-seepage of canal system and the enforcement of dynamo-electric well, developing high-efficient water-saving irrigation and overall metering facilities. The water fine-grained management has realized, and obvious water-saving effect has obtained: water-using rate in the irrigation area by river water has brought up to 0.57 from 0.52, and by well water up to 0.84 from 0.76. Although the water price has increased, the proportion that the water rate expenditure accounted for the cost lasts decline, and the farmers' income has gone up. The peasants express, the used water is few, and it is few to till land, but the income is many, and life is better.

  • PDF

Maximizing of hydropower generation of Hwacheon Reservoir using HEC-ResPRM model

  • Karimizadeh, Keivan;Choi, Changwon;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.219-219
    • /
    • 2015
  • Hwacheon Reservoir is one of the reservoirs, which are located on the North Han River in South Korea. Construction of this reservoir was started in 1939 and completed in 1944. At the upstream of this reservoir there are Peace Reservoir, which is located in South Korea and Imnam Reservoir, which is located in North Korea. After construction of Imnam Reservoir, inflow regularity of Hwacheon Reservoir was changed and inflow of Hwacheon Reservoir also, was decreased. Peace Reservoir is used to decrease flood and damage at downstream due to unexpected release from Imnam Reservoir. This reservoir also, has a special role to regulate inflow of Hwacheon Reservoir. Hwacheon Reservoir has an important role for hydropower generation and flood control. Capacity and maximum discharge capacity of Hwacheon Reservoir are 1018 million $m^3$ and $9500m^3/s$, respectively. This reservoir has four generators to produce power and it is one of the important reservoirs for hydropower generation in South Korea. Due to the important role of this reservoir in generating power, maximization of hydropower generation of this reservoir is important and necessary. For this purpose, HEC-ResPRM model was applied in this study. HEC-ResPRM is a useful and applicable model to operate reservoirs and it gives optimal value for release to maximize power by minimizing penalty functions. In this study, after running the model, amount of release was optimized and hydropower generation was maximized by allocating more water for hydropower release instead of spillway release. Also, the model increased release in dry period from October to June to prevent high amount of release in flood season from July to September.

  • PDF

An Analysis of the Effect of Climate Change on Nakdong River Environmental Flow (낙동강 유역 환경유량에 대한 기후변화의 영향 분석)

  • Lee, A Yeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.273-285
    • /
    • 2011
  • This study describes the modeling of climate change impact on runoff across southeast Korea using a conceptual rainfall-runoff model TANK and assesses the results using the concept of environmental flows developed by International Water Management Institute. The future climate time series is obtained by scaling the historical series, informed by 4 global climate models and 3 greenhouse gas emission scenarios, to reflect a $4.0^{\circ}C$ increase at most in average surface air temperature and 31.7% increase at most in annual precipitation, using the spatio-temporal changing factor method that considers changes in the future mean seasonal rainfall and potential evapotranspiration as well as in the daily rainfall distribution. Although the simulation results from different global circulation models and greenhouse emission scenarios indicate different responses in flows to the climate change, the majority of the modeling results show that there will be more runoff in southeast Korea in the future. However, there is substantial uncertainty, with the results ranging from a 5.82% decrease to a 48.15% increase in the mean annual runoff averaged across the study area according to the corresponding climate change scenarios. We then assess the hydrologic perturbations based on the comparison between present and future flow duration curves suggested by IMWI. As a result, the effect of hydrologic perturbation on aquatic ecosystems may be significant at several locations of the Nakdong river main stream in dry season.

Strategies to improve irrigation water management for rice production in Pulangui River Irrigation System

  • Siem, Paul Roderick M.;Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.509-509
    • /
    • 2022
  • Rice has always been the anchor of food security in the Philippines and the government is adamant about sustaining rice production by ensuring reliable irrigation water availability. Among the numerous irrigation schemes, the importance of the Pulangui River Irrigation System (PRIS) is undeniable, as it is the largest and primary irrigation source for rice production areas which are considered the food basket in Northern Mindanao. However, the ageing irrigation structures, unlined canals, long-standing water delivery systems, and climate change are compromising the performance of PRIS; and every year, during the dry and wet season, the maximum rice irrigable area is not achieved. From the field-scale water management perspective, untimely irrigation application, an unregulated roster of turn for irrigation among farmers, and the traditional practice of flooding the rice fields are the main causes of substantial water losses in conveyance, distribution, and farm application of irrigation water. Hence, proper irrigation scheduling is crucial to cultivate the maximum irrigable area by ensuring equity among the farmers and to increase the water use efficiency and yield. In this study, the FAO single crop coefficient approach was adopted to estimate rice water requirements, which were subsequently used to suggest appropriate irrigation schedules based on the recommended field-scale rice cultivation practices. The study results would improve the irrigation system management in the study area by facilitating in regulating the canal water flows and releases according to suggested irrigation schedules that could lead to increased benefited area, yield, and water efficiency without straining the available water resources.

  • PDF

Analysis of Stomatal Traits of Non-woody Plant Species Present in a Riparian Park Area in Nakdong River (낙동강 수변 공원 지역에 서식하는 초본 식물의 기공 형질 분석)

  • Myeong-geun Song;Ki-jung Nam
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.384-392
    • /
    • 2023
  • Stomatal pore is an important physiological trait that is closely linked to photosynthesis and transpiration as carbon dioxide and water vapor move through it between the atmosphere and plants. The present study investigated stomatal traits, such as stomatal density, index and size, of herbaceous native and alien plant species living in a riparian park on the Nakdong River to understand how those traits vary and to know if successful settlement of alien plants is attributed to those traits. There was no difference in stomatal density, index and size between native and alien plants with kidney-shaped stomata, suggesting that an empty ecological niche is not an essential prerequisite for the successful settlement of alien plants. Stomatal density showed a negative correlation with leaf thickness and leaf dry weight content (LMDC), but there was no correlation with Specific leaf area (SLA). All plants with kidney-shaped stomata had amphistomatous leaves, and the density and size of dumbell-shaped stomata were lower than those of kidney-shaped stomata.

Formation Environment of Quaternary deposits and Palynology of Jangheung-ri Archaeological Site (Jiphyeon County, Jinju City), Korea (진주 집현 장흥리 유적 제4기 퇴적층 형성 및 식생환경 연구)

  • 김주용;박영철;양동윤;봉필윤;서영남;이윤수;김진관
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.9-21
    • /
    • 2002
  • In Korea, many open-air upper palaeolithic sites are located at the river valley, particularly exposed in gently rotting terrain along the river course. They are situated at an altitude less trail 30 m above present river bottom, and covered with the blankets of slope deposits of several meters in thickness. The purpose of this research is to eluridate depositional and vegetational environment of the alluvial upper palaeolithic Jangheung-ri sites on the basis of analytical properties of grain size population, chronology, palynology, soil chemistry and clay mineralogy and magnetic susceptibility of the Jangheung-ri Quaternary formations. The lithostratograpy of Jangheung-ri sit is subdivided into 3 layers based on the depositional sequence and radiocarbon ages. From bottom to top, they are composed of slope deposits with lower paleosol layers, young fluvial sand and gravel with backswamp organic muds, and upper paleosol layers. The upper paleosol was formed under rather dry climatic condition between each flooding period. Dessication cracks were prevalent in the soil solum which was filled with secondarily minuted fragments due to pedogenetic process. The soil structure shows typical braided-typed cracks in the root part of cracking texture, and more diversified pattern of crackings downward. The young fluvial sand gravel were formed by rather perennial streams after LGM. The main part of organic muds was particularly formed after 15Ka. Local backswamp were flourished with organic muds and graded suspension materials in the flooding muds were intermittently accumulated in the organic muds until ca. 11Ka. This episode was associated with migration of Nam River toward present course. Organic muds were formed in backswamp or local pond. Abies/Picea-Betula with Ranunculaceae, Compositae, Cyperaceae were prevalent. This period is characterized with B$\Phi$lling, Older Dryas, Allerod, and Younger Dryas (MIS-1). Stone artefacts were found in the lower paleosol layers formed as old as 18Ka-22Ka. Based on the artefacts and landscape settings of the Jangheung-ri site, it is presumed that settlement grounds of old people were buried by frequent floodings of old Nam River, the river-beds of which were heavily fluctuated laterally and river-bed erosions were activated from south to north in Jangheung-ri site until the terminal of LGM9ca 17Ka).

  • PDF

Microalgae Removal and Energy Production by Combined Electro-flotation and Anaerobic Hydrogen Fermentation Processes (전기부상과 혐기성 수소 발효 공정의 결합을 통한 미세조류 제거 및 에너지 생산)

  • Lee, Chae-Young;Na, Dong-Chae;Choi, Jae-Min;Kang, Doo-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • The algal bloom, resulting from eutrophication, has caused serious water quality problems in river and lake. Therefore, it has to be removed by any means including physicochemical or biological treatment for preserving water quality. This study was conducted to investigate the microalgae removal and energy production using combined electro-flotation and anaerobic hydrogen fermentation processes. The result showed that algae removal efficiency based on chlorophyll a removal increased with the current. At a current of 0.6A, the maximum microalgae removal efficiency of 95.9% was achieved. The treatability of anaerobic hydrogen fermentation was investigated to recover energy from microalgae removed by electro-flotation. The ultimate hydrogen yields of algae before and after ultrasonic pretreatment were 17.3 and 61.1 ml $H_2/g$ dcw(dry cell weight), respectively. The ultrasonic pretreatment of algae led to 3.4-fold higher $H_2$ production due to the increase of hydrolysis rate.

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

Effect of NPS Loadings from Livestock on Small Watersheds (축산농가에서 배출되는 비점오염 물질이 소규모 유역에 미치는 영향)

  • Lee, Su In;Shin, Min Hwan;Jeon, Je Hong;Park, Byeong Ky;Lee, Ji Min;Won, Chul Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.27-36
    • /
    • 2015
  • The objective of this paper was to quantitatively analyze the effect of concentrated animal feeding operations (CAFO) NPS pollution on a small watershed water quality. Monitoring was conducted from March to October, 2013. Monthly flow rate and selected water quality at each monitoring site were measured during dry days. Rainy day monitoring also was conducted. Modeling was conducted to evaluate the effect of CAFO NPS pollution on the water quality at the watershed outlet. The highest and mean concentration of selected water quality indices during rainy days were higher than those in dry days in general. The highest TN concentration measured at the CAFP pollution discharge point was 237.831 mg/L. The results revealed that the CAFO NPS pollution sources could be equally blamed for the water quality degradation of the stream. However, the effect of the NPS pollution from CAFOs seemed not to be very influential to the watershed water quality at the outlet. SWAT modeling revealed that the TN load was reduced by 18.95 %, 23.39 % and 30.53 % at the watershed outlet if the TN load at the CAFO NPS pollution discharge point reduced by 20 %, 40 % and 60 %, respectively. It was thought that the natural attenuation processes played an important role. The modeling was based only on the assumption of the load reduction and not verified by the monitored data. Therefore, it was suggested that a long term monitoring studies for the evaluation of the impact of CAFO NPS pollution on the watershed water quality be conducted.

Modeling of Discharge Characteristics of Combined Sewer Overflows(CSOs) from a Small Urban Watershed in Daejeon City (대전광역시 소유역에서 합류식 하수관거 월류수(CSOs)의 배출특성 모델링)

  • Kim, Jeong-Kon;Ko, Ick-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.654-660
    • /
    • 2006
  • This study investigated the discharge characteristics of combined sewer overflows(CSOs) at a small watershed located in the Ojeong-cheon area of the Daejeon-cheon, Daejeon City. The long-term variations of discharges, water quality, and SS loads from 2001 to 2004 were simulated using SWMM. The simulation results indicated that suspended solid(SS) loads during the rainy seasons(July${\sim}$August) were highest throughout the whole year, but not substantially higher than those during the dry seasons. This result is due to the fact that contaminants do not buildup significantly because of frequent rainfall events during the wet seasons. It was estimated that about 9.3% of SS was discharged to the receiving body the during dry seasons while 90.7% during the rainy seasons. Further analysis showed that during the wet seasons SS loads discharged at the site as CSOs and at the wastewater treatment plant without treatment were 38% and 62%, respectively.