DOI QR코드

DOI QR Code

Analysis of Stomatal Traits of Non-woody Plant Species Present in a Riparian Park Area in Nakdong River

낙동강 수변 공원 지역에 서식하는 초본 식물의 기공 형질 분석

  • Myeong-geun Song (Department of Biology Education, Gyeongsang National University) ;
  • Ki-jung Nam (Institute of Agriculture & Life Science, Gyeongsang National University)
  • 송명근 (경상대학교 생물교육과) ;
  • 남기정 (경상대학교 농업생명과학연구원)
  • Received : 2023.12.07
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

Stomatal pore is an important physiological trait that is closely linked to photosynthesis and transpiration as carbon dioxide and water vapor move through it between the atmosphere and plants. The present study investigated stomatal traits, such as stomatal density, index and size, of herbaceous native and alien plant species living in a riparian park on the Nakdong River to understand how those traits vary and to know if successful settlement of alien plants is attributed to those traits. There was no difference in stomatal density, index and size between native and alien plants with kidney-shaped stomata, suggesting that an empty ecological niche is not an essential prerequisite for the successful settlement of alien plants. Stomatal density showed a negative correlation with leaf thickness and leaf dry weight content (LMDC), but there was no correlation with Specific leaf area (SLA). All plants with kidney-shaped stomata had amphistomatous leaves, and the density and size of dumbell-shaped stomata were lower than those of kidney-shaped stomata.

식물의 기공은 이산화탄소와 수증기가 대기와 식물 사이를 이동하는 통로로 광합성 및 증산작용과 밀접하게 연관되는 중요한 생리적 기능 형질이다. 본 연구에서는 낙동강변에 서식하는 초본 식물종을 대상으로 자생식물과 외래식물 사이에 기공 형질에 차이가 있는지 조사 분석함으로써 낙동강변 식물 군집 내 기공 형질의 변이 양상을 파악하고, 또한 외래식물이 성공적으로 정착하는 이유를 알아보고자 하였다. 조사 결과, 같은 신장 모양 기공 형태를 가진 외래식물과 자생식물의 경우 기공밀도, 기공지수, 기공크기에 차이가 없었고, 이는 외래식물의 성공적 정착에 비어있는 생태적 지위가 꼭 필요한 것은 아님을 시사하였다. 기공밀도는 잎의 두께와 음의 상관관계를, 잎건조중량(LMDC)과는 양의 상관관계를 보였으며, 잎면적비(SLA)와는 상관관계가 없었다. 신장 모양기공을 가진 식물은 모두 양면기공형 잎을 가지고 있었고, 아령 모양 기공의 밀도 및 크기가 신장 모양 기공보다 작았다.

Keywords

References

  1. Catford, J.A., R. Jansson and C. Nilsson. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Diversity and Distributions 15: 22-40. https://doi.org/10.1111/j.1472-4642.2008.00521.x
  2. Drake, P.L., H.J.D. Boer, S.J. Schymanski and E.J. Veneklaas. 2019. Two sides to every leaf: water and CO2 transport in hypostomatous and amphistomatous leaves. New Phytologist 222(3): 1179-1187. https://doi.org/10.1111/nph.15652
  3. Drenovsky, R.E., A. Khasanova and J.J. James. 2012. Trait convergence and plasticity among native and invasive species in resource-poor environments. American Journal of Botany 99: 629-639. https://doi.org/10.3732/ajb.1100417
  4. Franks, P.J. and D.J. Beerling. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of National Academy of Science 106: 10343-10347. https://doi.org/10.1073/pnas.0904209106
  5. Funk, J.L. 2013. The physiology of invasive plants in lowresource environments. Conservation Physiology 1: 1-17. https://doi.org/10.1093/conphys/cot026
  6. Funk, J.L., J.E. Larson, G.M. Ames, B.J. Butterfield, J. Cavender-Bares, J. Firn, D.C. Laughlin, A.E. Sutton-Grier, L. Williams and J. Wright. 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews 92(2): 1156-1173. https://doi.org/10.1111/brv.12275
  7. Haworth, M., C.P. Scutt, C. Douthe, G. Marino, M.T.G. Gomes, F. Loreto, J. Flexas and M. Centritto. 2018. Allocation of the epidermis to stomata relates to stomatalphysiological control: stomatal factors involved in the evolutionary diversification of the angiosperms and development of amphistomaty. Environmental and Experimental Botany 151: 55-63 https://doi.org/10.1016/j.envexpbot.2018.04.010
  8. Haworth, M., G. Marino, A. Materassi, A. Raschi, C.P. Scutt and M. Centritto. 2023. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO2] and role in plant physiological behaviour. Science of The Total Environment 863: 160908.
  9. Hetherington, A.M. and F.I. Woodward. 2013. The role of stomata in sensing and driving environmental change. Nature 424: 901-908. https://doi.org/10.1038/nature01843
  10. Hulme, P.E. and M. Bernard Verdier. 2017. Comparing traits of native and alien plants: Can we do better? Functional Ecology 32: 117-125. https://doi.org/10.1111/1365-2435.12982
  11. Kim, M.J. and K.J. Nam. 2022. Comparison of sampling methods in biodiversity analysis of plant communities living in a riparian park area of Nakdong river. Journal of Wetlands Research 24(4): 312-319.
  12. Lambers, H. and H. Poorter. 1992. Inherent variation in growthrate between higher-plants - a search for physiological causes and ecological consequences. Advances of Ecological Research 23: 187-61.
  13. Loranger, J. and B. Shipley. 2010. Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88(1): 30-38. https://doi.org/10.1139/B09-103
  14. Lodge, A.G., T.J.S. Whitfeld, A.M. Roth and P.B. Reich. 2018. Invasive plants in Minnesota are "joining the locals": A trait-based analysis. Journal of Vegetation Science 29(4):746-755. https://doi.org/10.1111/jvs.12659
  15. Perez-Harguindeguy, N., S. Diaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry and J.H.C. Cornelissen. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. https://doi.org/10.1071/BT12225
  16. Scharfy, D., A. Funk, H. Olde Venterink and S. Gusewell. 2011. Invasive forbs differ functionally from native graminoids, but are similar to native forbs. New Phytologist 189: 818-828. https://doi.org/10.1111/j.1469-8137.2010.03531.x
  17. Son, M.J. and K.J. Nam. 2021. Analysis of functional traits of non-woody native and naturalized plant species living in a riparian park area near the Hapcheon-Changyeong Weir in Nakdon River. Korean Journal of Ecology and Environment 54(4): 327-333. https://doi.org/10.11614/KSL.2021.54.4.327
  18. Tecco, P.A., C. Urcelay, S. Diaz, M. Cabido and N. Perez-Harguindeguy. 2013. Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology 38: 443-451. https://doi.org/10.1111/j.1442-9993.2012.02428.x
  19. Wigley, B.J., J.A. Slingsby, S. Diaz, W.J. Bond, H. Fritz and C. Coetsee. 2016. Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. Journal of Ecology 104: 1357-1369. https://doi.org/10.1111/1365-2745.12598
  20. Xiong, D. and J. Flexas. 2020. From one side to two sides: the effects of stomatal distribution on photosynthesis. New Phytologist 228: 1754-1766. https://doi.org/10.1111/nph.16801
  21. Zeballos, S.R., M.A. Giorgis, A.M. Cingolani, M. Cabido, J.I. Whitworth-Hulse and D.E. Gurvich. 2014. Do alien and native tree species from Central Argentina differ in their water transport strategy? Austral Ecology 39: 984-991. https://doi.org/10.1111/aec.12171
  22. Zheng, Y., M. Xu, R. Hou, R. Shen, S. Qiu and Z. Ouyang. 2013. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution 3(9): 3095-3111. https://doi.org/10.1002/ece3.674