• Title/Summary/Keyword: Drum-brake Shoe

Search Result 7, Processing Time 0.02 seconds

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

Dynamic Stability of a Drum Brake Shoe under a Frictional Force (마찰력을 받는 드럼 브레이크-슈의 동적안정성)

  • ;;Yoshihiko Sugiyama
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.216-222
    • /
    • 2001
  • The paper presents the dynamic stability of a flexible shoe in drum brake systems subjected to a frictional force. The frictional force between the drum and the shoe is assumed as a distributed frictional force, while the shute is modeled as an elastic beam supported by two translational springs at both ends and elastic foundations. Governing equations of motion are derived by energy expressions, and their numerical results are obtained by employing the finite element method. The critical distributed frictional force and the instability regions are demonstrated by changing the stiffness of two translational springs and elastic foundation parameters. It is also shown that the beam loses its stability by flutter and divergence depending on the stiffness of elastic supports and elastic foundation parameters. Time responses of beams corresponding to their instability types are also demonstrated.

  • PDF

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF

Dynamic Stability of a Drum-brake Shoe Under a Pulsating Frictional Force (주기적인 마찰력을 받는 드럼-브레이크 슈의 동적안정성)

  • 류봉조;오부진;임경빈;김효준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.890-896
    • /
    • 2002
  • This paper deals with the dynamic stability of a brake shoe under pulsating frictional forces. A lining part of brake systems is assumed as a distributed spring, and the supported elements of a shoe are assumed as translational springs for a constant distributed frictional force and a pulsating frictional force. Governing equations are derived by the use of the extended Hamilton's principle, and numerical results are calculated by finite element method. The critical distributed frictional force and instability regions were investigated for the change of distributed spring constants and translational spring constants.

Rear drum brake creak(scratching) noise improvement during braking(or parking apply) (제동시 발생하는 리어 드럼브레이크 creak(scratching) 노이즈 개선)

  • Jang, Myunghoon;Park, Shin;Kim, Sunho;Kim, Sunghwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.486-491
    • /
    • 2013
  • Creak noise is kind of scratching noise which is usually generated in drum brake system on the vehicle. When driver brakes vehicle or applies parking lever, drum brake shoe moves to the drum side to stop the vehicle. And at that time, moving shoe scratches backing plate ledge surface, and that makes scratching noise in special condition. This study presents how we can generate creak noise in the laboratory and how we can reduce it by experimental approach. Through several and various type of tests, we could generate creak noise with damage on ledge area of the backing plate in the lab and we verified tab type shoe design can reduce this scratching noise. As a result of this study, we notified how creak noise happens in the vehicle, and that tab type design shoe has good performance of ledge area damage based on lab test(rig & dynamometer equipment), and that this can reduce potential risk of creak noise in the field.

  • PDF

Dynamic Stability and Vibration of a Drum Brake Shoe under a Distributed Frictional Force (분포 마찰력을 받는 드럼 브레이크-슈의 동적안정성과 진동)

  • Ryu, Bong-Jo;Ryu, Si-Ung;Yoshihiko Sugiyama;Oh, Boo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.207-212
    • /
    • 2001
  • In this paper, dynamic stability and vibration characteristics of a flexible shoe in drum brake systems are investigated. The frictional force between the drum and the shoe is assumed as a distributed frictional force, while the shoe is modeled as an elastic beam supported by two translational springs at both ends and elastic foundations. Governing equations of motion are derived by energy expressions, and numerical results are calculated by finite element method. Through the numerical simulation, critical distributed frictional forces are calculated by changing the stiffness of two translational springs and elastic foundation parameters. It is also shown that the beam loses its stability by flutter and divergence depending on the stiffness of elastic supports and elastic foundation parameters. Finally, the time responses of the beam corresponding to their instability types are demonstrated.

  • PDF

A Study on the Squeal Noise of Drum Brakes (드럼 브레이크의 스퀼 소음에 관한 연구)

  • 이장무;김종현;유성우;안창기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.111-116
    • /
    • 1998
  • The squeal of drum brakes was investigated numerically and experimentally. Modal testings were performed for shoes, drums, backing plates and their assemblies. In order to predict the squeal phenomena, stability analysis was performed based on a simplified self-excited vibration model. Based on modal testings, the dynamic properties of the brake elements and the parameters used in this analysis were determined. The geometries of shoes and drums were also considered. The result shows that the modification methods of the shoe and the drum design are feasible for noise reduction.

  • PDF