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Dynamic Stability and Vibration of a Drum Brake Shoe under

a Distributed Frictional Force

Bong-Jo Ryu, Si-Ung Ryu, Yoshihiko Sugiyama and Boo-Jin Oh

ABSTRACT

In this paper, dynamic stability and vibration characteristics of a flexible shoe in drum brake systems are
investigated. The frictional force between the drum and the shoe is assumed as a distributed frictional force,

while the shoe is modeled as an elastic beam supported by two translational springs at both ends and elastic

foundations. Governing equations of motion are derived by energy expressions, and numerical results are

calculated by finite element method. Through the numerical simulation, critical distributed frictional forces are

calculated by changing the stiffness of two translational springs and elastic foundation parameters. It is also

shown that the beam loses its stability by flutter and divergence depending on the stiffness of elastic supports

and elastic foundation parameters. Finally, the time responses of the beam corresponding to their instability

types are demonstrated.

1. INTRODUCTION

Drum brakes are adopted by many kinds of heavy
vehicles such as trucks and busses, because the brake
systems are simple and reliable. However braking
operation may generate uncomfortable noises and
vibrations in the braking systems. These noises and
vibrations may be referred to as moan, groan, squeal,
judder and so on, depending on the frequency ranges.

These different terminologies for the brake noises

imply that there can be many different mechanisms
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for the noises and vibrations. As to the mechanism
of brake noises, the earlier theory suggested that the
noise could be caused by negative friction-induced
vibration. It is noted that the theory based upon
one-degree of freedom model ™.

However the recent theories of brake noises have
of freedom model

based on the multi-degree

subjected to nonconservative loads induced by
constant frictional forces between the drum and the
=9 The theory states that
squeal is attributable to dynamic instability of elastic
brake

loads''

shoe the drum brake

systems under a nonconservative
Y
—a .

' The intended

to show the possibility of dynamic instability of a

constant
aim of the present paper is

brake shoe when it is assumed to be flexible and
subjected to a distributed frictional force, while the
dynamic instability of drums has been studied well

n
so far'!
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2. ANALYSIS

2.1 Mathematical Model

Figure 1 depicts a conceptual sketch of a standard
drum brake system. Figure 2 shows an idealized
model of a drum-shoe system.

Fig. 1 Conceptual sketch of a drum brake

system.

Fig. 2 ldealized drum-shoe system.

The shoe is now assumed to be elastic and thus
flexible,
rigid.

though the real shoes are very stubby and
In reality, there is a lining between the drum
and the shoe. The lining is modeled for simplicity into
a Winkler-type elastic foundation of the spring constant
k. It is assumed that the shoe is supported at both
ends elastically by two linear springs of different
ky and k. The shoe

spring constants is then

assumed to be subjected to a distributed follower force
induced by dry friction between the drum and the
shoe. Distributed tangential follower force applied to a
column was first considered by Pfliiger in his book®.

Fundamental aspects of the effect of distributed
follower forces on the stability of columns were complied
in a book by Leipholz®.
such kind of follower forces has been an issue of

However the existence of
severe criticism so far® Figure 2 implies one
example of the existence of a distributed tangential
follower force. Intended aim of the present paper is to
demonstrate the possible of distributed
tangential follower force induced by a dry friction
between the drum and the shoe in drum brake
systems.

existence

§§§§§§§§§§§§ ¢

~

Fig. 3 Column model of a brake shoe under a

distributed follower force.

-~

Figure 3 shows a simplified column model imaged
from the model in Figure 2. The column is assumed
to be an elastic, uniform, and straight column of total
length L, mass per unit length s, and bending

stiffness EL

2.2 Finite Element Formulation

Extended Hamiton's principle for the nonconservative

system under consideration can be written in the form.

5 T+ W= U= Uddt+ ) (oW, dt=10 0

Energy expressions for the mathematical model in

-

Figure 3 are written in the following forms.

The Kkinetic energy of the uniform column ;



)zdx 2)

=L ("2

The work done by the conservative component of
the distributed follower force ;

AR 3
=1 ["a(L~ (-2 Var &)
The virtual work done by the nonconservative

component of the distributed follower force ;

oW=—1 [“a(-22)5yax @

2

The potential energy of the column due to bending ;

f EI(

The strain energy stored in the elastic foundation

)de 3

and the two spring supports ;
N 1, 2 1, 2
Us=73 fo R dit 5 by (0, 0+ 5 by (L) (6)

After substitution of equations (2)-(6) into equation
(1), transformation leads to

J; o

+ EI( )6( )

By (L Tx-22)
o328y kyéy)dra

= [ U389 e+ Ceoyon), - b= 0 )

For simplicity the following dimensionless quantities

are introduced :

X _ ¢t [ EI _aL’
§=7- 7 = 72 m F=

_ kL _ kL kL
K="gr Ki=—fr K=—F ®

where F is the distributed follower force parameter.

K is the nondimensional elastic foundation parameter.

Further, K, and K, are the nondimensional
parameters describing the spring constants of the two
elastic supports, respectively.

Equation (7) with equation (8) can be written in the

dimensionless form.

foaL
fr fo [2.07.+ F(1~ 87:07:+ Fn:00— 7::07::~ K567)

dede— [ [(K\ 700 oo + (1o eildr=0 )

In order to obtain a characteristic equation of smail
motion of the column, the column is divided into N
equal elements to be compatible with finite element

method. Then equation (9) can be written as

[7:69.+ F(1 — &) n:0n:+ Fn:07— 7::072

figs]

— Kndnldé—{[ (K,967) s~ o+ (Kondm) e Ddr=0 (10)

‘“(z ¥

Substitution of local coordinates ( &=N&—i+]1 )
into equation (10) yields the following discretized

equation

f [ ﬁ D899 + EN(N— i+ 1— 8707

__FN”‘gz)a,](t)_NJTléé)a”éé)_K”(i)av(z)}dE

~{(K2WV8y V) .oy + (KanM89'™) o2 )1dr=0(11)

The dimensionless displacement 7 can be assumed

to take the form.

{(7(¢, 9} = {0} - {r* (D) (12)
By substitution of equation (12) into (I1), finally the

characteristic equation is obtained in the matrix form.

(MK b+ KN} =0 (13)
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The displacement field varies with time according to
an exponential law.

(D) = (X}e™ (14)

Finally, the global characteristic equation can be
obtained in the form.

MUK+ A [Ell=0 (15)

where, [E] is the unit matrix.

The stability of the system under consideration is
determined by the sign of real part ¢ of complex
eigenvalue A= o do( i=V—1). If 60, the system
is stable ; if ¢>0 and w=0, the system is statically
unstable, i.e., divergence type instability ; if >0 and
w+(, the system is dynamically unstable, i.e., flutter
' type if =0, distributed

follower force( F,,) arises.

instability ; the critical

3. NUMERICAL RESULTS

Figure 4 shows the relation between the critical
distributed follower force and the stiffness of the two
K,=K,, for the different values of
K=0.0, 10,
type instability can occur in the range K =K, <
39.976.

equal supports
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Fig. 4 Critical distributed friction forces depending

on elastic foundations and translational springs.

It is noted that the critical distributed follower force

does not change for the value of K in this range.

This intuitively unexpected behavior was first
reported by Smith and Herrmann®. At the critical
point (K,=K;),=39.976, the critical distributed

follower force jumps, and the instability type changes
from flutter to divergence. Only the divergence type of

K= K, =239.977.
When K=0.0, the critical distributed follower force,

instability occurs in the range
F,/7*=1921, is constant for sufficiently large values
of K=K, The critical flutter value F_/7?=1.921

for the beam simply supported at both ends agrees
with the earlier results in the references(6, 9). When
K=10.0, 100.0, the critical distributed follower force

increases with the increasing K= K,.

Eigen-frequencies

Distributed friction force, Fix’

Fig. Sa First and second eigen-frequencies for
distributed friction forces( K=0.0).
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Fig. 5b First and second eigen-frequencies for
distributed friction forces( K=10.0).

-210-



20
Mbana,
164 ?
.
QO 12 )ess 00888868 888888 8RR AR N
g S At&t‘AAAAA-
z A
8 f R
T 8 : A
s Y A\
H Claese A
w ] i xi
1576\/ 2283 4
o R
0 T T T .r
00 04 08 12 16 20

Distributed friction force, F/x’

Fig. 5¢ First and second eigen-frequencies for

distributed friction forces( K=100.0).

It is now interesting to observe eigen-value curves
to understand how the instability changes from flutter
to divergence can take place at the critical stiffness of
K,= K,=39.976.

Figure 5(a)~(c) show the eigen-frequencies curves
of the first and second mode for various values of the
K=K, =38, 39, 40. Figure 5(a)

shows the eigen-frequencies for K=0.0.

support  stiffness

It is observed in Figure 5(a) that the first and
second eigen-frequencies coincide each other, and thus
the flutter type instability can occurs for K,= K, =38
and 39.

forces are F,/x*=1.576 and 1.654. Divergence occurs

The flutter values of the distributed follower

as the first eigen-frequency becomes zero, at F, /7
=1.921 for K= K,=40.0.
It is seen in Figure 5(b) and (c) that the first and

second eigen-frequencies become larger as the elastic
embedding is stiffer. It is confirmed that the flutter
value of distributed follower force is constant regardless
its elastic foundation, while the eigen-frequencies by
themselves depend on the stiffness of the elastic
foundation as seen in Figure S(a). (b) and (c) [8].
Figure 6 shows the relation between the critical
distributed follower force and the stiffness the lower

support K,, when K=00 and K,=10.0. 100.0,
1000.0. There are three regions of instability, A, B,
and C. The critical distributed follower force for
divergence instability increases monotonically as the

value of K is small enough and increasing.

Then flutter type instability takes place for the

stiffness K, of about the order of 10.0. After a sharp
climb of flutter value at K;=40.5, divergence occurs
again for K;>40.5. The critical distributed follower
force value F,/x*=1.921, remains constant for the

considerably large value K.
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Translational spring stiffness, K|

Fig. 6 Effect of the right translational spring
on stability of beams, when K=0.0.

Figure 7 depicts typical unstable configurations at
the B region of instability in Figure 6.

In this figure, we can see the flutter response with
increasing time.
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Fig. 7 Time response of the region B in Figure 6
(K=0.0, K, =20.0, K, =10.0).
4. CONCLUDING REMARKS
The brake shoe is simplified into an elastically
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supported columns subjected to a distributed follower
due to a dry friction. The evidence of the existence a
distributed follower force applied to a flexible column
has been demonstrated by the present paper. The paper
has suggested that the instability of shoe can be
considered as one of the many possible mechanisms
for drum brake squeal, if the shoe is weak and thus
flexible.

Though Hulten® concluded that the instabilities due
to follower forces are negligible in real drum brake
systems applied to automobiles, there are however
some flexible shoes which are made from rubber and
applied to bicycles.
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