• 제목/요약/키워드: Drum Brake

검색결과 40건 처리시간 0.025초

FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석 (Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM)

  • 서창민;지현철
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

대형 상용차용 브레이크 드럼의 온도 분포 및 열응력에 관한 유한요소 해석 (FEM Analysis on Temperature Distribution and Thermal Stress of a Brake Drum for Large Commercial Vehicle)

  • 김호경;이영인;주세민
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.7-13
    • /
    • 2006
  • A transient heat transfer and thermal stress analysis for a brake drum of commercial vehicles have been performed by ANSYS code in the cases of single braking and the repeated braking condition. The temperature and thermal stress distributions in the brake drum under various braking conditions were obtained using a two-dimensional axisymmetric model. In case of deceleration of 0.3G with an initial vehicle speed of 60km/h, the maximum temperature in the drum was $87.6^{\circ}C$ after braking application. The maximum stress of 78.7MPa in the drum occurred at the intersection between the flange and hat under a condition in which repeated 15 cycles braking with an initial vehicle speed of 60km/h and a deceleration of 0.3G is applied to according to KS R1129. The maximum stress value is much lower than the yield strength of drum material(FC250).

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선 (Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

유한요소법을 이용한 브레이크 드럼의 열응력 해석 (Thermal Stress Analysis of Brake Drum by Using Finite Element Analysis)

  • 박영철;박동성
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.77-84
    • /
    • 2000
  • Nonlinear transient analysis is executed to obtain the temperature distribution, and to evaluate the thermal stress of brake drum by using FEA(finite element analysis). The result induces the reason why hair crack and the cause of drum failure occurs and the way how stress of drum decreases. The temperature of drum is in proportion to the drum thickness and it processes nonlinear changes at every points of drum. The higher bulk temperature raises, the more stress difference between inner surface and outer surface makes and the highest bulk temperature is at the corner section. It is necessary for the diminishment of the drum stress to make air flow, between drum and rim, move lively and use the materials of higher conductivity. The hair crack and the cause of drum failure seem to be started at the near corner section.

  • PDF

회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성 (Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

다아나모 실험을 통한 Al-MMC 브레이크 드럼의 제동성능 평가 (The Braking Performance Evaluation of Al-MMC Brake Drum Using the Dynamometer)

  • 윤영식;유승을;한범석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.733-736
    • /
    • 2002
  • This study was carried out to investigate the braking performances associated with the friction coefficients and temperature fluctuations. Friction coefficient stability and maximum temperature of brake drums, made of an Al-MMC and conventional cast iron, were tested by the inertial brake dynamometer during 15 braking operations. Also the temperature distribution was analyzed by the finite element analysis(FEA). In this experiment, both lower temperature rise near the drum surface and less variation of friction coefficient, compared to those of cast iron, were observed with Al-MMC drums during braking operations.

  • PDF

드럼 브레이크 시스템의 비정상 열전달 해석 (Unsteady State Heat Transfer Analysis of Drum Brake System)

  • 이계섭;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.172-181
    • /
    • 1999
  • The brakes employed on commercial vehicles must be able to withstand three types of demanding services which are use-emergency stops from high speed, many repeated stops as in a delivery or bus route, and speed control in mountain descents. Two type of friction brakes are in use ; drum breaks and disc brakes. Drum brakes are of the internally expanding type in which two shoes fitted externally with friction material are forced outward against the inside of a rotating drum on the wheel unit. In this case, the Braking power is produced by the friction force between a drum and a lining, and is converted into heat. In this research an unsteady state heat transfer analysis for drum brake system of heavy truck has been performed by ABAQUS/standard code in the case of single-braking and the repeated braking condition. The temperature histories obtained by the finite Element analysis have been compared with the result calculated by the simplified formulation and the result obtained by the experiment of real vehicle conditions.

  • PDF

구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감 (Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis)

  • 김진호;배병주;이시복;김태종
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰 (An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle)

  • 문일동;김종대;오재윤
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.