• Title/Summary/Keyword: Drug concentration

Search Result 1,758, Processing Time 0.032 seconds

The assessment of the performance of drug-eluting stent using computational fluid dynamics

  • Seo, Tae-Won;Barakat, Abdul I.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.281-288
    • /
    • 2009
  • Numerical investigations have been conducted on the assessment of the performance of drug-eluting stent. Computational fluid dynamics is applied to investigate the flow disturbances and drug distributions released from the stent in the immediate vicinity of the given idealized stent in the protrusion into the flow domain. Our simulations have revealed the drug concentration in the flow field due to the presence of a drug-eluting stent within an arterial segment. Wall shear stress increases with Reynolds number for a given stent diameter, while it increases with stent diameter for a given Reynolds number. The drug concentration is dependent on both Reynolds number and stent geometry. In pulsatile flow, the minimum drug concentration in the zone of inter-wire spacing occurs at the maximum acceleration of the inlet flow while the maximum drug concentration gains at the maximum deceleration of the inlet flow. These results provide an understanding of the flow physics in the vicinity of drug-eluting stents and suggest strategies for optimal performance of drug-eluting stent to minimize flow disturbance.

Drug-biomacromolecule interaction 1

  • Kim, Chong-Kook;Ahn, Hae-Young
    • Archives of Pharmacal Research
    • /
    • v.4 no.2
    • /
    • pp.99-107
    • /
    • 1981
  • To investigate the protein binding characteristics of ibuprofenlysine, the effects of drub conentration, pH, ionic strength and protein concentration on the binding of drug to protein concentration on the binding of drug to protein were studied by fluorescence probe method. The conformational change of protein was investigated by circular dichroism (CD) measurement. As the concentration of drug increases, the association constant decreases. These may be due to complex formation of the probe and drug, or the interaction of the protein-probe complex and drug. The association constant for ibuprofenlysine increased with increasing protein concentration. These finding suggest a sharing of one ibuprofenlysine molecule by more than one protein molecule in the binding. The binding between ibuprofenlysine and protein was dependent on pH and ionic strength. It seems that both hydrophobic binding and some electrostatic forces are involved in the binding of ibuprofenlysing to protein.

  • PDF

Study on Preparation and Drug Release of Sulconazole Nitrate Gels (질산술코나졸겔의 제조 및 약물방출에 관한 연구)

  • Hyun, Jong-Mok;Kim, Kyung-Kook;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • Sulconazole nitrate(SCN), an imidazole derivative which has been effective in the treatment of dermatophytosis, tinea versicolor and candidiasis, was formulated as a gel containing drug, poloxamer 407, ethanol and propylene glycol. The resulting SCN gels were evaluated with respect to their viscosity, drug release rate, skin permeation rate. The apparent viscosity of SCN gel increased in proportion to poloxamer 407, drug and propylene glycol concentration. In case ethanol was added, the apparent viscosity decreased. The drug release rate of SCN gel increased in proportion to temperature and ethanol concentration. But the drug release rate decreased as the concentration of poloxamer 407 increased. The increase of drug concentration induced nonlinear increase of drug release rate. When propylene glycol was added at the level of 10%, the drug release rate increased but from 15% it decreased. The skin permeation rate decreased in high concentration of poloxamer 407. The skin permeation rate of SCN gel containing 15% ethanol increased about twice than that of gel without ethanol. The increase of drug concentration induced nonlinear increase of skin permeation rate. When propylene glycol was added at the level of 10%, the skin permeation rate increased but from 15% it decreased.

  • PDF

EFFICACY EVALUATION OF THE WHITENING COSMETICS USING IN VITRO TYROSINASE INHIBITION ASSAY

  • Lee, J. P.;Kim, Y. O.;J. Y. Jang;K. H. Son;S. J. Yang;Lee, K. S.;Kim, W. H.;J. T. Hong;Park, S. S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.479-479
    • /
    • 2003
  • We investigated the tyrosinase inhibitory effect using whitening materials such as arbutin, ethyl ascorbyl ether, glabridin, kojic acid, magnesium ascorbyl phosphate and ascorbic acid. Tyrosinase inhibition rate were determined varying the enzyme concentration, reaction time, reaction temperature and pH. The optimal conditions to measure the inhibitory efficacy were as follows. : enzyme concentration 1,500 or 2,000IU/mL, reaction time 15min(for the enzyme concentration 1,500 IU/mL) and l0min(for the enzyme concentration 2,000IU/mL), reation temperature 42$^{\circ}C$, pH 6.5. Under these conditions $IC_{50}$/ of arbutin, ethyl ascorbyl ether, glabridin, kojic acid, magnesium ascorbyl phosphate and ascorbic acid were calculated. In the case of magnesium ascorbyl phosphate, the inhibitory effect of tyrosinase was very low and the $IC_{50}$/ of magnesium ascorbyl phosphate could not be calculated. Other five materials showed good inhibitory effect of tyrosinase and can be used for the whitening materials.

  • PDF

Drug Release Characteristics of Biodegradable Polymers for Stent Coating (스텐트 코팅용 생분해성 고분자의 약물 방출 특성)

  • 강혜수;김진설;김동운;강병철;이봉희;김범수
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.107-110
    • /
    • 2003
  • Biodegradable polymers, poly(lactic-co-glycolic acid) (PLGA), poly(3-hydroxybutyrate) (PHB), and medium chain length polyhydroxyalkanoates (MCL-PHA) containing rose bengal (model drug) were coated onto the surface of stainless steel (stent materials) and their in vitro release characteristics were investigated. Drug release increased with; decreasing PLGA concentration, increasing rose bengal concentration, and Increasing dip-coating duration. The order of drug release from the polymer coating was: PHB > PLGA > MCL-PHA. These results suggest that drug release can be controlled by: changing the concentration and type of polymer, the drug concentration, and the dip-coating duration.

Numerical Study of Flow Pattern and Drug Deposition in Drug-Eluting Stent (약물분출 스텐트 주위 유동형태와 약물침전에 대한 수치해석)

  • Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1053-1060
    • /
    • 2011
  • This study is performed to determine the drug concentration profiles of drug-eluting stents (DES) for an ideal circular ring stent and intertwined stent models for various Reynolds numbers (Re = 200, 400, and 800). The Navier.Stokes equations coupled with the advection-diffusion equation are solved numerically in order to determine how the flow patterns and drug deposition are affected in the in-stent and post-stent regions where flow separation and recirculation occur. The presence of DES within the arterial segment affects the local drug distribution in the flow field. As a result, the drug concentration for the intertwined stent is higher over the in-stent region in comparison with the ideal stents. For a given stent geometry, the local drug concentration in the in-stent region decreases with Reynolds number, while for a given Reynolds number, the local drug concentration is relatively insensitive to the stent geometry. The results show that drug concentration along the arterial wall is significantly higher within the in-stent and post-stent regions for the intertwined stent geometry than for the ideal stent geometries.

Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent (고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석)

  • Seo, Tae-Won;Barakat, Abdul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

Mathematical description of drug distribution in the isolated organ

  • Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 1980
  • The model of an isolated organ system has been constructed to simulated the behavior of drug in the circulatory system of an acting organ or site. The model is developed on the following assumptions : The drug in the microcirculatory system cannot permeate the capilary walls. The capilary bed is modeled as a simple ideal plug flow system with and without radial concentration gradient. The mathematical model is developed from basic considerations of drug distribution with hemodynamical and pharmacokinetical meanings. It is considered that a nonmetabolic drug substance is injected into the arterial inflow site of an isolated organ at a constant rate. The concentration of the drug in the outflow site is mathematically expressed as a function of time.

  • PDF

Cross-Linked Starch Microspheres: Effect of Cross-Linking Condition on the Microsphere Characteristics

  • Atyabi, Fatemeh;Manoochehri, Saeed;Moghadam, Shadi H.;Dinarvand, Rassoul
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1179-1186
    • /
    • 2006
  • Cross-linked starch microspheres were prepared using different kinds of cross-linking agents. The influence of several parameters on morphology, size, swelling ratio and drug release rate from these microspheres were evaluated. These parameters included cross-linker type, concentration and the duration of cross-linking reaction. Microspheres cross-linked with glutaraldehyde had smooth surface compared with those prepared with epichlorhydrine or formaldehyde. The particle size increased with increasing the cross-linking time and increasing the drug loading. Swelling ratio of the particles was a function of cross-linker type but not the concentration or time of cross-linking. Drug release from starch microspheres was measured in phosphate buffer and also in phosphate buffer containing a-amylase. Results showed that microspheres cross-linked with epichlorhydrine released all their drug content in the first 30 minutes. However, cross-linking of the starch microspheres with glutaraldehyde or formaldehyde decreased drug release rate. SEM and drug release studies showed that cross-linked starch microspheres were susceptible to the enzymatic degradation under the influence of alpha-amylase. Changing the enzyme concentration from 5000 to 10,000 IU/L, increased drug release rate but higher concentration of enzyme (20,000 IU/L) caused no more acceleration.

Targeted and sustained delivery of hydrocortisone to normal and stratum corneum-removed skin without enhanced skin absorption using a liposome gel

  • Kim, Moon-Kyoung;Chung, Suk-Jae;Lee, Min-Hwa;Cho, Ae-Ri;Shim, Chang-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.278-278
    • /
    • 1996
  • Judging from hydrocortisone concentration in dosing area, the extent of absorption was reduced in the liposome-gel formulation. However, higher and sustained skin concentrations of hydrocortisone were achieved for the liposome-gel as compared to the ointment. Drug concentration in both viable and deep skin reached its maximum within 0.5 h after application of both formulations to both skin types. Drug concentrations in both skins from the ointment declined with time, while those from the liposome-gel were greatly sustained. The sustainment by the liposome-gel was more remarkable in the viable skin than in the deep skin. Drug concentration in the viable skin could be maintained at a nearly constant level for over 8 h by applying the liposome-gel. As a result, a 5-fold higher viable skin drug concentration was obtained from the liposome-gel than from the ointment at 8 h after the application to the SC-removed skin. However, the plasma concentration of hydrocortisone at 4 h from the liposome-gel was only one-fourth (p<0.01) the value from the ointment when the drug was applied to the SC-removed skin, consistent with. the lower urinary (one-third, p<0.05) and fecal (one-half, p<0.05) excretion. Conclusions : Retarded diffusion of the drug from the skin to the systemic blood stream appears to be a potential factor in the sustained skin concentration of hydrocortisone from the liposome-gel, Interaction of hydrocortisone in the skin with phosphatidylcholine, a component of the liposomes and skin, may well be a factor in retarding the diffusion of the drug in the skin.

  • PDF