• Title/Summary/Keyword: Drought warning

Search Result 33, Processing Time 0.026 seconds

Reservoir Operation by Drought Forecasting and Warning (가뭄 예ㆍ경보에 의한 저수지 운영에 관한 연구)

  • Yi, Jae-Eung;Kim, Young-A
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.837-844
    • /
    • 2004
  • In this study, the efficient reservoir operation is studied by comparing results from reservoir operation using a basin drought forecasting and warning system with an existing reservoir operation rule. As a result, it is found that the reliability and average annual storage of reservoir operation using a basin drought forecasting and warning system and release coefficients is better than those of reservoir operation using the existing operation rule. The release coefficients for Yongdam dam located in the Geum river basin selected as a case study are found to be the most effective for the value of 0.95 for the drought watch, 0.9 for the drought warning and 0.85 for the drought emergency. The reservoir operation using a drought forecasting and warning enables the use of the limited water resources effectively during drought and will contribute the national water resources management.

Estimation on Drought Indicator Using Various Time Series (다양한 시계열을 이용한 가뭄지표 산정)

  • Im, Gyeong-Jin;Sim, Myeong-Pil;Seong, Gi-Won;Lee, Hyeon-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.673-685
    • /
    • 2001
  • In this study, the drought indicator is calculate from the rainfall, daily highest temperature, streamflow and Palmer Drought Severity Index(PDSI) for water plan and drought management in a relatively wide region. Three levels of drought severity, called drought watch, drought warning, and drought emergency, are established for these series which determine exceedance levels. The 25% nonexceedance level is used for drought watch, 10% for drought warning, and 5% for drought emergency to figure how well the drought indicators represent the past-drought and that those can be used for drought monitoring. As a result, 9-month and 12-month precipitation, and PDSI series shows the best consistency and high correlation indicate droughts. Because the results are based on the gauged data and simply calculated, the suggested indices can be used for basic data for drought monitoring system of a basin.

  • PDF

Drought Triggers and Monitoring System (가뭄 경보기준과 모니터링 시스템)

  • Lee, Dong-Ryul;Lee, Dea-Hee;Kang, Shin-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.375-384
    • /
    • 2003
  • Severe drought tends to occur in almost event five years in Korea. Drought responses have been well operated in close collaboration with the central, local government and the water management authorities on the institutional framework. However, the responses are usually post-activities to a drought event. The responses often face difficulties in operating and managing process due to an absence of a drought monitoring system and drought triggers. The objective of this study is to set up drought triggers through a time-spatial interpretation of drought index and the government responses during historical drought events. Drought triggers are divided into four categories: advisory, watch, warning and emergency stage. The range and drought-impacted area of an each stage in triggers have been addressed using drought index. Furthermore, a web-based drought monitoring system is illustrated.

A Study on the Index of Drought and Drought Management Considering Reservoir Storage (저수용량을 고려한 가뭄지수 산정과 가뭄관리에 관한 연구)

  • Cho, Hong Je;Park, Han Ki;Kim, Su Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 1998
  • The goal of the present research was to develop a mean to determine indices of drought warning and emergency necessary to manage drought and establish water supply contingency plan for the municipal and industrial water supply system in urban areas. To do this, we worked on the Sayun catchment which is the main water source of Ulsan and used measured hydrologic data (storage, inflow, supply, outflow) from 1980 to 1996. The indices of drought calculated by the method of Phillips drought index based only on monthly precipitation do not pertinently represent drought phenomena in case water supply is from dam or reservoir in an urban area. Therefor, we developed the drought index technique including inflow, storage, outflow and supply which are the chief factors of drought management. The result showed that the method of Phillips drought index considering the capacity of water supply was excellent when applied to practical drought phenomena.

  • PDF

Development of Evaluation System for Agricultural Drought Management (농업가뭄 분석을 위한 농업가뭄평가.정보제공시스템 개발)

  • Park, Ki-Wook;Kim, Jin-Taek;Cheong, Byung-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.7-13
    • /
    • 2005
  • There are two ways to mitigate the drought. One is the structural measures such as storage of irrigation water, development of emergency wells, etc. The other one is the nonstructural measures such as water saving management by the early warning system. To precast and evaluate the drought, we need to develop the drought indices for agriculture. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. However there are not clear quantitative criteria for consistent judgment. This shows that we have not selected and utilized the proper drought index for agriculture and we did not have the information system to calculate the drought indices periodically and warn the outbreak of the drought. The objectives of the study are to develope of Agricultural Drought Evaluation System and to evaluate this indices for current agricultural status using the system.

  • PDF

Establishing meteorological drought severity considering the level of emergency water supply (비상급수의 규모를 고려한 기상학적 가뭄 강도 수립)

  • Lee, Seungmin;Wang, Wonjoon;Kim, Donghyun;Han, Heechan;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.619-629
    • /
    • 2023
  • Recent intensification of climate change has led to an increase in damages caused by droughts. Currently, in Korea, the Standardized Precipitation Index (SPI) is used as a criterion to classify the intensity of droughts. Based on the accumulated precipitation over the past six months (SPI-6), meteorological drought intensities are classified into four categories: concern, caution, alert, and severe. However, there is a limitation in classifying drought intensity solely based on precipitation. To overcome the limitations of the meteorological drought warning criteria based on SPI, this study collected emergency water supply damage data from the National Drought Information Portal (NDIP) to classify drought intensity. Factors of SPI, such as precipitation, and factors used to calculate evapotranspiration, such as temperature and humidity, were indexed using min-max normalization. Coefficients for each factor were determined based on the Genetic Algorithm (GA). The drought intensity based on emergency water supply was used as the dependent variable, and the coefficients of each meteorological factor determined by GA were used as coefficients to derive a new Drought Severity Classification Index (DSCI). After deriving the DSCI, cumulative distribution functions were used to present intensity stage classification boundaries. It is anticipated that using the proposed DSCI in this study will allow for more accurate drought intensity classification than the traditional SPI, supporting decision-making for disaster management personnel.

Improvement of Drought Operation Criteria in Agricultural Reservoirs (농업용 저수지 이수관리를 위한 저수율 가뭄단계기준 개선)

  • Mun, Young-Sik;Nam, Won-Ho;Woo, Seung-Beom;Lee, Hee-Jin;Yang, Mi-Hye;Lee, Jong-Seo;Ha, Tae-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.11-20
    • /
    • 2022
  • Currently, the operation rule of agricultural reservoirs in case of drought events follows the drought forecast warning standard of agricultural water supply. However, it is difficult to preemptively manage drought in individual reservoirs because drought forecasting standards are set according to average reservoir storage ratio such as 70%, 60%, 50%, and 40%. The equal standards based on average water level across the country could not reflect the actual drought situation in the region. In this study, we proposed the improvement of drought operation rule for agricultural reservoirs based on the percentile approach using past water level of each reservoir. The percentile approach is applied to monitor drought conditions and determine drought criteria in the U.S. Drought Monitoring (USDM). We applied the drought operation rule to reservoir storage rate in extreme 2017 spring drought year, the one of the most climatologically driest spring seasons over the 1961-2021 period of record. We counted frequency of each drought criteria which are existing and developed operation rules to compare drought operation rule determining the actual drought conditions during 2016-2017. As a result of comparing the current standard and the percentile standard with SPI6, the percentile standard showed severe-level when SPI6 showed severe drought condition, but the current standard fell short of the results. Results can be used to improve the drought operation criteria of drought events that better reflects the actual drought conditions in agricultural reservoirs.

A Study on the Index of Drought Warning and Emergency for the Municipal Water Supply Management (도시지역 용수관리를 위한 가뭄 예경보지수에 관한 연구)

  • 조홍제
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.221-233
    • /
    • 1996
  • The goal of the present research was to suggest a simple, reliable, and easily evaluated index of drought that could be used to consider a counterplan for water supply management against water shortage for municipal and industrial uses in city area. The index of drought was calculated by the Phillips drought index technique. The phillips drought index is based on exceedence probabilities of monthly precipitation but it can also utilize daily data in order to present drought information on a real-time basis when needed. The application of the suggested technique was tested to municipal water supply system and management of Ulsan city and Pohang city, and showed promising. The Philips drought index technique could be used for lany other city's drought contingency paln.

  • PDF

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • Kim, Gwang-Seob;Quan, Ngo Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

Drought Index Development for Agricultural Drought Monitoring in a Catchment (집수역 내 농업가뭄 감시를 위한 가뭄지수 개발)

  • Kim, Dae-Jun;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.359-367
    • /
    • 2014
  • Drought index can be used to implement an early warning system for drought and to operate a drought monitoring service. In this study, an approach was examined to determine agricultural drought index (ADI) at high spatial resolution, e.g., 270 m. The value of ADI was calculated based on soil water balance between supply and demand of water. Water supply is calculated by the cumulative effective precipitation with the application of the weight to the precipitation from two months ago. Water demand is derived from the actual evapotranspiration, which was calculated applying a crop coefficient to the reference evapotranspiration. The amount of surface runoff on a given soil type was also used to calculate soil residual moisture. Presence of drought was determined based on the probability distribution in the given area. In order to assess the reliability of this index, the amount of residual moisture, which represents severity of drought, was compared with measurements of soil moisture at three experimental between July 2012 and December 2013. As a result, the ADI had greater correlation with measured soil moisture compared with the standardized precipitation index, which suggested that the ADI would be useful for drought warning services.