• Title/Summary/Keyword: Drought treatment

Search Result 214, Processing Time 0.033 seconds

Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of vanillic acid and p-hydroxybenzoic acid

  • Nguyen, Thanh Quan;Do, Tan Khang;Nguyen, Van Quan;Truong, Ngoc Minh;Tran, Dang Xuan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.33-33
    • /
    • 2017
  • Water stress obstructs rice growth mainly by oxidative damage in biological cells to cause a reduction of leaf photosynthesis and evapotranspiration processes. In this study, exogenous application of vanillic acid (VA) and p-hydroxybenzoic acid (PHBA) to improve drought tolerance of two Oryza sativa cultivars, Q2 and Q8 was tested. The drought evaluation based on leaf phenotypes to show that both Q2 and Q8 resulted in remarkable water-stress tolerance induced by leaf spraying pretreatment of mixed solution of $50{\mu}M\;VA+50{\mu}M\;PHBA$. The mixtures of $25{\mu}M\;VA+25{\mu}M\;PHBA$ and $50{\mu}M\;VA+50{\mu}M\;PHBA$ treated on Q2 and Q8 in water deficit condition also indicated that total phenols, total flavonoids, and DPPH radical scavenging activity were significantly greater their controls. In general, the accumulation of individual phenolic acids was increased in exogenous phenolic treatments, as compared with controls. Particularly, Q2 obtained a considerable amount of endogenous PHBA after application of $50{\mu}M\;VA$, $25{\mu}M\;VA+25{\mu}M\;PHBA$, and $50{\mu}M\;VA+50{\mu}M\;PHBA$ (0.18 mg/g DW, 0.71 mg/g DW, and 1.41 mg/g DW, respectively); and a negligible content of VA (0.003 mg/g DW) appeared uniquely in the treatment of $50{\mu}M\;VA$. Similarly, Q8 also absorbed a significant quantity of PHBA in $50{\mu}M\;PHBA$, $25{\mu}M\;VA+25{\mu}M\;PHBA$, and $50{\mu}M\;VA+50{\mu}M\;PHBA$ treatments (0.15 mg/g DW, 0.15 mg/g DW, and 0.22 mg/g DW, respectively). In addition, the spraying $50{\mu}M\;PHBA$ and $25{\mu}M\;VA+25{\mu}M\;PHBA$ on Q8 leaves induced similar amount of VA (0.04 mg/g DW). Meanwhile, there were no trace of VA and PHBA found in controls. The levels of drought tolerance of Q2 and Q8 were improved, paralleled with the increased amounts of endogenous phenolics revealed that VA and PHBA played an important role to enhance drought tolerance in rice.

  • PDF

Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene (CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가)

  • Park, Sung-Chul;Kim, Myoung Duck;Kim, Sun Ha;Kim, Yun-Hee;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Glycine betaine (GB) is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants under salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into GB, has been cloned from a soil bacterium Arthrobacter globiformis. We generated transgenic sweetpotato plants [Ipomoea batatas (L.) Lam] expressing codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated SC plants under oxidative and drought stresses. SC plants showed enhanced tolerance to methyl viologen (MV)-mediated oxidative stress and drought stress due to induced expression of codA. At $5{\mu}M$ of MV treatment, all SC plants showed enhanced tolerance to MV-mediated oxidative stress through maintaining low ion leakage and increased GB levels compared to wild type plants. When plants were subjected to drought conditions, SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased codA expression compared to wild type plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands.

Mycorrhizae Effects on N Uptake and Assimilation Estimated by 15N Tracing in White Clover under Water-Stressed Conditions (15N 추적에 의한 화이트 클로버에서 마이코라이자 접종이 수분 스트레스 조건하에서 질소 흡수 및 동화의 평가)

  • Zhang, Qian;Park, Sang-Hyun;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.3
    • /
    • pp.277-284
    • /
    • 2011
  • To investigate the effects of arbuscular mycorrhizal (AM) symbiosis on N uptake and its assimilation under drought-stressed conditions in white clover, total $^{15}N$ amount and $^{15}N$ amount incorporated into $NO_3^-$, amino acids and soluble proteins were quantified by $^{15}N$ tracing during 7 days of water treatment. Under well-watered conditions, there were no significant effects of AM symbiosis on all parameters analyzed in this study. Drought stress decreased total $^{15}N$ amount both in AM and non-AM plants, with a lower rate in AM plants (-13.8%) relative to non-AM plants (-28.5%) at day 7. Drought significantly increased $^{15}N-NO_3^-$ amount in non-AM plants. The amount of $^{15}N$-amino acids was 1.26-fold and 1.33-fold higher, respectively, in leaves and roots of AM plants compared to those of non-AM ones. Drought decreased the amount of $^{15}N$-soluble proteins in leaves at day 7, with a higher rate in non-AM plants than in AM ones. These results clearly indicate that AM colonization effectively alleviating the decrease in N uptake, amino acids and proteins synthesis caused by drought stress.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development

  • Huh, Jae-Hoon;Ahn, Ji-Whan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • One of the most threatening consequences of eutrophic freshwater reservoirs is algal blooming which typically occur after the long a mega drought or/and irregular rainfall under influence of climate change. The long-term experiences of chemical treatment are known as a most practical effort to reduce health concerns from human exposure of harmful cyanobacteria as well as to preserve ultimate freshwater resources. Even though these conventional chemical treatment methods do not completely solve the algal residue problem in water treatment plant or directly in the water bodies, they still have big advantages as fast and efficient removal process of cyanobacteria due to cheaper, easier to manage. This review summarizes their chemical treatment scenarios of the representative coagulants, pre-oxidants and algaecides composed to chemical compounds which immediately may help to manage severe cyanobacteria blooms in the summer seasons.

Effects of Water Stress by PEG on Growth and Physiological Traits in Rice Seedlings

  • Choi, Weon-Young;Kang, Si-Yong;Park, Hong-Kyu;Kim, Sang-Su;Lee, Ki-Sang;Lee, Kyu-Seong;Shin, Hyun-Tak;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2000
  • This study was conducted to evaluate the drought tolerance of Japonica and Indica rice cultivars during germinating and seedling stages by using the polyethylene glycol (PEG) solution. Each 5 cultivars of Japonica and Indica were cultured from 14 days after seeding(DAS) to 21 DAS using the PEG solution in a moderate water potential (-0.63 MPa). The lengths of radicle and plumule during the germinating stage were inhibitied by the PEG treatment to about 50% and 85%, respectively. The application of PEG to the seedling of two rice types caused to inhibit the plant height and leaf age about 23 % and 10%, respectively. Shoot and root dry weights by PEG treatment were inhibited more severely in Japonica than those in Indica. The difference on delaying of leaf area expansion between both rice types was not found with treatment of PEG, while the leaf color was increased in both Japonica and Indica by 19.9% and 9.2%, respectively. The average photosynthetic ability was inhibited more in Japonica to 36.0% than did Indica to 27.9%. The stomatal conductance was severely affected by PEG treatment, and the degree was varied in both rice types, ranged with 80-85% in Japonica and 29.3-81.6% in Indica. These results indicate there is little relationship between seed germination and seedling growth under the stress of low water potential.

  • PDF

Drought Stress Influences Photosynthesis and Water Relations Parameters of Synurus deltoides (건조스트레스가 수리취의 광합성 및 수분관련 특성에 미치는 영향)

  • Lee, Kyeong-Cheol;Lee, Hak Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.3
    • /
    • pp.288-299
    • /
    • 2017
  • This study was conducted to find out the influence of drought stress on physiological responses of Synurus deltoides. Drought stress was induced by withholding water for 25 days. Leaf water potentials were decreased of both predawn (${\Psi}_{pd}$) and mid-day (${\Psi}_{mid}$) with increasing drought stress, but water saturation dificit (WSD) was 7 times increased. ${\Psi}_{pd}-{\Psi}_{mid}$ showed the significant difference of 0.22~0.18 MPa in stressed before 10 days, and nonsignificant as treatment time became longer. A strong reduction of stomatal conductance ($gH_2O$) and stomatal transpiration rate (E) were observed after 15 days of drought stress Significant reductions of net apparent quantum yield (${\Phi}$) and maximum photosynthesis rate ($Pn_{max}$) were observed after 20 days of drought stress; However, water use efficiency (WUE) was shown the opposite trend. This implies that decrease of photosynthesis rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. From JIP analysis, flux ratios (${\Psi}_O$ and ${\Phi}_{EO}$) and performance index on absorption basis ($PI_{ABS}$) were dramatically decreased withholding water after 15 days, which reflects the relative reduction of photosystem II activity. The leaf of S. deltoides showed osmotic adjustment of -0.35 MPa at full turgor and -0.40 MPa at zero turgor, and also cell-wall elastic adjustment of 9.4 MPa, indicating that S. deltoides tolerate drought stress through osmotic adjustment and cell-wall elastic adjustment. The degree of change in water relations parameters such as Vo/DW, Vt/DW decreased with increasing drought stress. This result showed that S. deltoides was exhibited a strong reduction of photosynthetic activity to approximately -0.93 MPa of predawn leaf water potential, and both of osmotic adjustment and cell-wall elastic adjustment in drought stress condition appears to be an important adaptation for restoration in this species.

Changes of Root System in Rice (Oryza sativa L.) Plant Under Salt- and Drought- Stressed Agar Medium Conditions. (Agar 배지를 이용한 건조 및 염 처리에 대한 벼 식물체의 근계 변화)

  • 강동진;석정용일;김길웅;이인중
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.396-399
    • /
    • 2004
  • This study was investigated the changes of root length, tissue structure of root tip, and dry matter production of a Dongjinbyeo (DJ) cultivar subjected to 0.4 % agar medium with various concentration of NaCl (salt stress)- and polyethylene glycol 6000 (PEG, drought stress). Root length and dry weight of DJ plant were declined along the high concentration of PEG and NaCl in rice plants. To elucidate the changes of tissue structure in root tip to PEG- and NaCl-treatments, we examined the microscopic observation of root tip in NaCl- and PEG-treated rice plants using Toluidine blue O. By Toluidine blue O staining, methyl-lignin accumulation was found in the epidermis and outer cortex of the elongation zone at an early stage of PEG treatment, whereas was found only the outer cortex of the elongation zone of NaCl-treated root tip. The epidermis of NaCl-treated root tip became soften instead of methyl-lignin accumulation. TR ratio was increased along the high concentration in PEG- and NaCl-treated rice plant as a result of inhibited root elongation under PEG- and NaCl-treatment. From these morphological changes in root stimulated by drought and salt stress, we suggest that agar medium is useful to identify tolerant variety in germination stage under stressful environments.

Antioxidant capacity in seedling of colored-grain wheat under water deficit condition

  • Kim, Dae Yeon;Hong, Min Jeong;Jung, Woo Joo;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.140-140
    • /
    • 2017
  • Nutritious and functional foods from crop have received great attention in recent years. Colored-grain wheat contains high phenolic compound and a large number of flavonoid. The anthocyanin and polyphenolic synthesis and accumulation is generally stimulated in response to biotic or abiotic stresses. Here, we analyzed genome wide transcripts in seedling of colored-grain wheat response to ABA and PEG treatment. About 900 and 1500 transcripts (p-value < 0.05) from ABA and PEG treatment were aligned to IWGSC1+popseq DB which is composed of over 110,000 transcripts including 100,934 coding genes. NR protein sequences of Poaceae from NCBI and protein sequence of transcription factors originated from 83 species in plant transcription factor database v3.0 were used for annotation of putative transcripts. Gene ontology analysis were conducted and KEGG mapping was performed to show expression pattern of biosynthesis genes related in flavonoid, isoflavonoid, flavons and anthocyanin biopathway. DroughtDB (http://pgsb.helmholtz-muenchen.de/droughtdb/) was used for detection of DEGs to explain that physiological and molecular drought avoidance by drought tolerance mechanisms. Drought response pathway, such as ABA signaling, water and ion channels, detoxification signaling, enzymes of osmolyte biosynthesis, phospholipid metabolism, signal transduction, and transcription factors related DEGs were selected to explain response mechanism under water deficit condition. Anthocyanin, phenol compound, and DPPH radical scavenging activity were measured and antioxidant activity enzyme assays were conducted to show biochemical adaptation under water deficit condition. Several MYB and bHLH transcription factors were up-regulated in both ABA and PEG treated condition, which means highly expressed MYB and bHLH transcription factors enhanced the expression of genes related in the biosynthesis pathways of flavonoids, such as anthocyanin and dihydroflavonols in colored wheat seedlings. Subsequently, the accumulation of total anthocyanin and phenol contents were observed in colored wheat seedlings, and antioxidant capacity was promoted by upregulation of genes involved in maintaining redox state and activation of antioxidant scavengers, such as CAT, APX, POD, and SOD in colored wheat seedlings under water deficit condition. This work may provide valuable and basic information for further investigation of the molecular responses of colored-grain wheat to water deficit stress and for further gene-based studies.

  • PDF

Effects of Salt and Drought Stresses on Seed Germination and Gene Expression Pattern in Tall Fescue (염과 건조 스트레스 조건에서 톨 페스큐의 종자 발아율과 유전자 발현 변화분석)

  • Lee, Sang-Hoon;Lee, Ki-Won;Choi, Gi Jun;Kim, Ki-Yong;Ji, Hee Jung;Hwang, Tae Young;Lee, Dong-Gi
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2014
  • Salinity and drought stresses are probably the most significant abiotic factor limiting plant's growth, also negatively affect seed germination and early seedling development. To study on effect of NaCl and PEG stress on seed germination and gene expression pattern of tall fescue, the levels of NaCl and PEG-induced water stresses were determined in first experiment. Different concentration of NaCl (0 to 350 mM) and PEG (0 to 30%) were used for seed treatment. Seed Germination percentage reduced with increasing osmotic potential of growth medium either due to NaCl or PEG. Seeds were not germinate at 350 mM NaCl or 30% PEG treatment. On the basis of the results, Kentucky31(E-) had more resistant than Fawn in both stress conditions. Furthermore, we have used an annealing control primer-based differential display reverse transcription-polymerase chain reaction method to identify salt- and drought stress-induced differentially expressed genes (DEGs) in tall fescue leaves. Using 120 annealing control primers, a total of 4 genes were identified and sequenced. The possible roles of the identified DEGs are discussed in the context of their putative role during salinity and drought stresses.