• 제목/요약/키워드: Drought treatment

검색결과 214건 처리시간 0.024초

한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화 (Changes in Physiological Characteristics of Barley Genotypes under Drought Stress)

  • 이변우;부금동;백남천;김정곤
    • 한국작물학회지
    • /
    • 제48권6호
    • /
    • pp.506-515
    • /
    • 2003
  • 이 논문은 한발저항성이 다른 6개 보리 품종의 한발에 따른 생장, 잎의 수분포텐셜(leaf water potential, LWP), 상대함수량(leaf relative water content, RWC), 삼투압(leaf osmotic potential, OP), 삼투조정(osmotic adjustment, OA), 팽압(leaf turgor pressure, LTP), 순광합섬, 기공전도도, 엽육전도도, 엽록소형광 등의 변화를 조사하여 비교한 결과를 요약하면 다음과 같다. 1 한발 처리시 토양수분포텐셜은 -0.05㎫이었고. 종료시에는 -0.29㎫로 저하하였다. Dicktoo-S 동보리 1호, Dicktoo-L, Dicktoo-T, 수원쌀보리 365호, 탑골보리 품종의 한발처리구 건물중은 각각 대조구(처리기간종 -0.05㎫ 유지)에 비하여 68%, 69%, 70%, 86%, 55%, 37%를 나타내어 Dicktoo 계통과 동보리1호의 한발저항성이 강하였고, 수원쌀보리 365호와 탑골보리는 한발저항성이 약하였다. 2. 한발저항성이 강한 품종은 삼투조정능력이 커서 한발처리에 따른 RWC와 LWP의 저하가 작았고 팽압유지능력이 컸다. 3. 한발처리에 따라 순광합성이 저하하였고 그 저하정도는 한발저항성이 큰 품종이 작았는데, 이는 한발저항성이 큰 품종이 기공전도도, 엽육전도도 및 PSII 최대양자수율(Fv/Fm)의 저하가 적었기 때문이었다. 4. 결론적으로 저항성이 큰 품종은 삼투조정에 의한 수분유지능력이 크고 이에 따라 광합성저하가 적어 상대적으로 생장의 감소가 적은 것으로 판단되었다.

보리 품종의 한발저항성과 생리적 지표와의 상관 (Relationship between Drought-Tolerance and Physiological Parameters in Korean Barley Genotypes)

  • 이변우;부금동;백남천;김정곤
    • 한국작물학회지
    • /
    • 제48권6호
    • /
    • pp.516-526
    • /
    • 2003
  • 본 실험은 한국 재배종과 재래 수집종을 포함하는 36개 보리 품종을 공시하여 비가림 플라스틱 하우스의 포장 조건에서 실시하였다 대조구는 전 생유기간에 걸쳐서 토양 수분 포텐셜이 -0.05㎫이 유지되도록 관개를 하였고, 한발 처리구는 월동 후 재생기부터 수확기까지 곤개를 하지 않았다. 한발 처리구의 토양 수분 포텐셜은 최저 -0.29㎫까지 저하하였고 처리기간 중 평균은 -0.15㎫이었다. 처리에에 따른 생장, 수량 및 수량구성요소, 잎의 상대수분함량(RWC), 삼투포텐설(OP), 삼투조정(OA), $^{13}\textrm{C}$ discrimination(A), 등의 변화를 조사하여 다음과 같은 결과를 얻었다. 1. 공시한 품종 중 한발 처리에 따른 건물 중과 수량 저하 가 작아서 한발 저항성이 강한 품종은 동보리1호. 찰보리, 창영재래, 삼도보리, 월성87-31 등이었으며, 상록보리 , 송학보리, 수원맥360 등은 한발저항성이 낮았다. 2. 건물중 및 수량의 한발피해지수(한발처리구/대조구 비)와 한발조건하 RWC와는 높은 정의 상관이, 한발조건하 OP 및 OA는 매우 높은 부의 상관관계가 있었으며, 대조구의 $\Delta$와는 유의한 정의 상관관계가 있었다. 3. OP $\Delta$ 및 RWC의 한발지수(한발처리구/대조구 비)는 건물중, 천립중 및 수량의 한발피해지수와 매우 높은 정의 상관 관계를 나타내었다. 4. 이상의 결과를 종합해 보면 한발 저항성이 큰 품종은 삼투 조정능력이 커서 잎의 수분함량을 높게 유지하는 특성을 가지고 있어서 한발 처리 조건에서 OP와 RWC는 보리의 한발저항성 선발지표로 이용될 수 있을 것으로 판단되었다. 그러나 $\Delta$와 한발 저항성간의 관계에 대해서는 보다 구체적인 연구가 필요한 것으로 생각된다.

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.

A Simple Method of Seedling Screening for Drought Tolerance in Soybean

  • Kim, Young-Jin;S. Shanmungasundaram;Yun, Song-Joong;Park, Ho-Ki;Park, Moon-Soo
    • 한국작물학회지
    • /
    • 제46권4호
    • /
    • pp.284-288
    • /
    • 2001
  • Water deficit is a serious constraint to soybean [Glycine max L. (Merr.)] production in rainfed regions of Asia, Africa, and America. This study was conducted to develop a simple and effective screening method for drought tolerance in soybean. Fifteen soybean cultivars, eight identified to be drought-tolerant and seven drought-sensitive in previous studies, were used for the evaluation of drought tolerance under the new screening conditions. The seedling screening method was consisted of a treatment in a PEG solution and drought treatment in parafilm-layered pots. 5-day-old seedlings were treated in a 18% PEG solution for 4 days and their wilting and hypocotyl browning were recorded. Three seedlings grown in a parafilm-layered pot containing peat moss were drought-stressed by withholding water from the third day after seedling emergence, and root and seedling growth were examined. Degree of drought tolerance were rated based on seedling vigor in the PEG solution and drought-stressed parafilm-layered pots, and also on the penetration ability of roots through parafilm layer. Most of seedlings of the drought-tolerant cultivars showed higher vigour and root penetration than those of the drought-sensitive cultivars under the new screening conditions. Our results indicate that the new method can be used as a simple and effective screening procedure for drought tolerance in soybean breeding programs.

  • PDF

Effect of Soil Water Stress on Yield and Quality of Korean Wheat

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.62-62
    • /
    • 2022
  • Among annual precipitation in Korea (1306.3 mm), 54% of it falls intensively in summer, and only about 12.4% falls in April and May, when the water requirement of wheat is the highest. Korean wheat also could be damaged by soil water excess stress as frozen soil thaws after winter (late Feb-Mar). This study was conducted to evaluate effect of soil water stress on yield and quality of Korean wheat cultivar 'Saegeumgang'. Soil water treatments consisted of 4 treatments; water excess treatment in tilling stage (3.23-3.30), drought treatment in ripening stage (Apr-Jun), irrigation treatment in ripening stage (5.10) and standard condition. There was no significant difference between the treatment conditions for culm length, and the number of spike number was the highest in the order of irrigation in the ripening period (951)> standard cultivation (876)> excess water treatment in the tilling stage (752)> drought treatment in the ripening stage (767/m2). Test weight and Thousand grain weight were 548g/L and 22. lg respectively, which were lower than other treatments, and there was no significant difference between the other treatments. Abortive grain was 5.4kg/10a which was lower than other treatment, and there was no significant difference between the other treatment than other treatments. In drought treatment, protein content was 11.9% which is the highest among all treatments, and SDS-sedimentation value was 27.2ml under drought treatment which was very low compared to other treatments. Therefore, wheat yield and spike number were decreased in excess water condition at tilling stage and drought condition at ripening stage. Furthermore, wheat quality became deteriorate in drought condition at ripening stage.

  • PDF

Evaluating Pre-silicon Treatment to Alleviate Drought Stress and Increases Antioxidative Activity in Zoysia japonica

  • Bae, Eun-Ji;Han, Jeong-Ji;Choi, Su-Min;Lee, Kwang-Soo;Park, Yong-Bae
    • Weed & Turfgrass Science
    • /
    • 제4권4호
    • /
    • pp.360-367
    • /
    • 2015
  • This study was performed to determine the effects of silicon on zoysiagrass after the application of drought stress. The daily amount of water or scilicon solution was 150 ml per a pot. For 14 days, plants were treated with 0.1 and 1.0 mM silicon (Si) and with distilled water for control and the drought only-treatment. Afterward, the plants in Si and drought treatment were exposed to a 21-day under drought stress condition but the plants in control received water. The results indicated that the growth and the moisture and chlorophyll contents decreased in the drought only-treatment and 0.1 mM Si compared to the control. However, 1.0 mM Si showed an increase in the growth with a significant increase of water and chlorophyll contents. The MDA and $H_2O_2$ concentrations and electrolyte leakage decreased, while the radical scavenging capacity increased in 1.0 mM Si. 1.0 mM Si showed little to no differences in the growth and no differences in water and chlorophyll contents, electrolyte leakage, MDA and $H_2O_2$ concentrations and antioxidant capacity compared to the control. These results suggested that application of silicon is useful for drought tolerance improvement of zoysiagrass under drought that is occurring in turf fields.

Growth and Physiological Responses of Quercus acutissima Seedling under Drought Stress

  • Lim, Hyemin;Kang, Jun Won;Lee, Solji;Lee, Hyunseok;Lee, Wi Young
    • Plant Breeding and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.363-370
    • /
    • 2017
  • In this study, Quercus acutissima seedlings were subjected to drought for 30 days then analyzed to determine their response to water deficit. The growth phenotype, chlorophyll fluorescence response, fresh weight, dry weight, photosynthetic pigment levels, soluble sugar content, and malondialdehyde (MDA) were measured to evaluate the effects of drought on plant growth and physiology. The growth phenotype was observed by infrared (IR) digital thermal imaging after 30 days of drought treatment. The maximum, average, and minimum temperatures of drought-treated plant leaves were $1-2^{\circ}C$ higher than those of the control. In contrast, the fresh and dry weights of the dehydrated leaves were generally lower than those of the control. There were no significant differences between treatments in terms of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid levels. Nevertheless, for the drought treatment, the $F_v/F_m$ and $F_v/F_o$ ratios (chlorophyll fluorescence response) were lower than those for the control. Therefore, photosynthetic activity was lower in the dehydrated plants than the control. The drought-stressed Q. acutissima S0536 had lower soluble sugar (glucose and fructose) and higher MDA levels than the controls. These findings may explain the early growth and physiological responses of Q. acutissima to dehydration and facilitate the selection of drought-resistant tree families.

Alleviating Effect of Salicylic Acid Pre-treatment on Soil Moisture Stress of Waxy Corn

  • Seo, Youngho;Ryu, Sihwan;Park, Jongyeol;Choi, Jaekeun;Park, Kijin;Kim, Kyunghi
    • 한국토양비료학회지
    • /
    • 제48권3호
    • /
    • pp.213-217
    • /
    • 2015
  • Soil moisture shortage can reduce yield of waxy corn because maize is one of the sensitive crops to the drought stress. Farmers cannot irrigate due to limited water resource and irrigating facilities although applying water is the most effective practice to solve the drought problem. The study was conducted to investigate the pre-treatment effect of salicylic acid on reducing drought damage of waxy corn (Zea mays L.). Salicylic acid at concentration of 0.2 mM was applied at seven-leaf stage or ten-leaf stage three times. Drought stress was imposed by withholding irrigation from 11 days before anthesis to 10 days after anthesis. Application of salicylic acid significantly increased ear length by 11.0~12.3% and yield by 8.8~11.3% compared with non-treated control, indicating that the drought injuries of waxy corn can be alleviated through pre-treatment of salicylic acid at the vegetative stage.

Changes in Antioxidant Enzyme Activities of Two Contrasting Ecotypes of Arundinella hirta to Drought Stress

  • Chang Woo Min;Yun-Hee Kim;Byung-Hyun Lee
    • 한국초지조사료학회지
    • /
    • 제43권2호
    • /
    • pp.67-74
    • /
    • 2023
  • To understand antioxidant enzyme response of two contrasting Arundinella hirta ecotypes to drought stress, drought-tolerant Youngduk and drought-sensitive Jinju-1, were comparatively analyzed changes in the enzymatic activities of peroxidase (POD), ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR). Two ecotypes, drought-tolerant Youngduk and drought-sensitive Jinju-1 were subjected to drought stress by withholding water for 12 days. ROS accumulation level and electrolytic leakage were significantly increased in both A. hirta ecotypes by drought stress treatment but less in Youngduk than Jinju-1. The RWC significantly decreased in both the drought stress-treated ecotypes as compared to control, but less in Youngduk than Jinju-1. Soluble sugar and protein content were increased more in drought stress-treated Youngduk as compared to Jinju-1. The activities of antioxidant enzymes such as SOD, CAT, POD, APX, and GR increased significantly in both the drought stress-treated ecotypes Youngduk and Jinju-1 as compared to control. The increase in antioxidant enzyme activity level was more prominent in drought stress-treated Youngduk as compared to Jinju-1. Taken together, these results suggest that Youngduk was more tolerant to drought stress than Jinju-1, and seem to indicate that tolerance of A. hirta to drought stress is associated with increased activity of antioxidant enzymes.

Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana

  • Cho, Song-Mi;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.427-434
    • /
    • 2013
  • 2R,3R-Butanediol, a volatile compound produced by certain rhizobacteria, is involved in induced drought tolerance in Arabidopsis thaliana through mechanisms involving stomatal closure. In this study, we examined the involvement of nitric oxide and hydrogen peroxide in induced drought tolerance, because these are signaling agents in drought stress responses mediated by abscisic acid (ABA). Fluorescence-based assays showed that systemic nitric oxide and hydrogen peroxide production was induced by 2R,3R-butanediol and correlated with expression of genes encoding nitrate reductase and nitric oxide synthase. Co-treatment of 2R,3R-butanediol with an inhibitor of nitrate reductase or an inhibitor of nitric oxide synthase lowered nitric oxide production and lessened induced drought tolerance. Increases in hydrogen peroxide were negated by co-treatment of 2R,3R-butanediol with inhibitors of NADPH oxidase, or peroxidase. These findings support the volatile 2R,3R-butanediol synthesized by certain rhizobacteria is an active player in induction of drought tolerance through mechanisms involving nitric oxide and hydrogen peroxide production.