• Title/Summary/Keyword: Drought treatment

Search Result 214, Processing Time 0.035 seconds

Physiological Responses of Water Stress at Seedling Stage in Barley (보리 유묘기의 수분부족이 몇가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Soh, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.189-195
    • /
    • 1997
  • To cope with increasing importance of water stress in food crop production, characteristics and cultivar differences in physiological responses of winter barley plants to water stress during seedling stage were studied employing three covered-barley, Milyang 12, Durubori, and Olbori, one naked-barley, Baekdong, and one two-row beer-barley, Hyangmaeg. Water stress was given to barley plants by withholding watering in soil-culture pots or by adding P.E.G. (polyethylene glycol, M. W. 4,000) to the nutrient culture solution. When water stress was imposed by withholding watering for 10 days to the seedlings grown in pot-soil for 10 days after emergence, leaf water potential of 5 cultivars was decreased almost to the same degree, from control -3.5 bar to the water stressed -26.6 bar. However, growth and some physiological responses were differently affected by cultivars: The plant height was decreased by 16-26% : seedling dry weight by 25∼42% ; chlorophyll content by 21∼39% ; second leaf survival rate by 8∼18% ; and free proline content per gram of leaf dry weight was increased from control 0.2∼0.5mg to the water stressed 5.8∼13.2mg. Drought resistances of 5 barley cultivars, based on the leaf survival rate and the decreased rate in seedling dry weight at the end of stress treatment, were high in the order of 3 covered-barley>naked-barley>two-row barley.

  • PDF

β-Glucan- and Xanthan gum-based Biopolymer Stimulated the Growth of Dominant Plant Species in the Korean Riverbanks (베타글루칸과 잔탄검 계열 바이오폴리머 신소재의 국내 하천 식물종에 대한 생육 촉진 영향)

  • Jeong, Hyungsoon;Jang, Ha-Young;Ahn, Sung-Ju;Kim, Eunsuk
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • The civil engineering materials used to stabilize the slopes of new riverbanks have a great impact on the types and growth of vegetation introduced after the completion of construction procedure. Recently, microbial-derived, ${\beta}$-glucan- and xanthan gum-based biopolymers are attracting attention as an ecofriendly strengthening material of riverbanks that can possibly stimulate plant growth. This study aimed to assess ecological effects of biopolymer application on native plants in Korean riverbanks. In particular, since dominant plant species could shape characteristics of an ecosystem, we examined the effects of biopolymer on the dominant plant species in riverbanks. Overall, biopolymer did not affect seed germination rates of testing plant species. In contrast, plants grew more vigorously in the soil mixed with biopolymer compared to those in the control soil. The biomass of Echinochloa crus-galli especially increased around two times more in the biopolymer treatment. Plants produced heavier root biomass and leaves with larger specific leaf area, which possibly contributes to the tolerance of environmental stress like drought. These results suggest that biopolymers treated on river banks are expected to stimulate plant growth and increase stress tolerance of domestic dominant plant species.

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress (건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향)

  • Jin, Eon-Ju;Yoon, Jun-Hyuk;Bae, Eun-Ji;Choi, Myung-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.196-207
    • /
    • 2019
  • This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

Grain Yield and Physiological Responses of Water Stress at Reproductive Stage in Barley (보리 생식생장기의 수분부족이 수량 및 몇 가지 생리적 반응에 미치는 영향)

  • Choi, Won-Yul;Kwon, Yong-Woong;Park, Jong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.3
    • /
    • pp.263-269
    • /
    • 1997
  • To cope with increasing importance of water stress in food crop production, some physiological characteristics, their cultivar-differences and grain yield of winter barley cultivars in response to water stress during reproductive stages were studied employing three covered-barley cultivars, Milyang 12, Durubori, and Olbori, one naked-barley cultivar, Baegdong, and one two-row malting-barley cultivar, Hyangmaeg. The barley grown in pot-soil was conditioned for 10 days under water stress, varying the time of water stress : 20 days before heading, 10 days before heading and the time of heading. The decrease in growth due to water stress varied greatly with the cultivars and time of water stress. The greatest injury occurred when water stress was imposed for 10 days from 10 days before heading : the culm length of water-stressed plants have shown reduced by 85∼98% of the non-stressed; the number of spikes per plant by 52∼83%; the number of grains per spike by 71∼86%; 1,000-grain weight by 80∼84%; yield per pot by 60∼94%. The number of spikes per plant as one of yield components was most sensitively affected. As a whole, the drought resistance of cultivars was high in the order of Olbori> Milyang 12 and Durubori> Hyangmaeg>Baegdong. On rewatering the plants after termination of the water stress treatment the recovery rate of free proline content and relative turgidity of flag leaf were higher in 3 covered-barley cultivars, and lower in cultivars Baegdong and Hyangmaeg.

  • PDF

Agrobacterium-mediated transformation produces transgenic oilseed rape with a high-yield trait (아그로박테리움 형질전환법을 이용한 수량증대 유채 식물체 개발)

  • Jong Bo Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.63-69
    • /
    • 2023
  • This study includes the transformation of genes such as ORE7, the increase of gene expression, and the use of the bar gene as a selectable marker that shows herbicide resistance with Agrobacterium tumefaciens using hypocotyls from the oilseed rape "Youngsan" cultivar. To establish an Agrobacterium transformation system for the production of oilseed rape with a high-yield trait, infection time and co-cultivation period with Agrobacterium were tested. Therefore, when hypocotyls from the oilseed rape "Youngsan" cultivar were infected with Agrobacterium for 20 min and co-cultivated for 3 days, approximately 32-36 putatively transformed hypocotyls with shoots including roots survived from 100 inoculated hypocotyls after 4 weeks of transformation on a selection medium containing 20 mg/L of phosphinothricin (PPT) as a selectable agent. Additionally, a PCR assay was performed to confirm the insertion of target genes and showed the presence of the ORE7 gene as a high-yielding trait and the bar gene as a selectable marker. Treatment with 0.5% (v/v) Basta solution as a selectable agent for 6 days with leaves from transformed oilseed rape expressed the bar gene. Therefore, this study can contribute to the development of special oilseed rapes containing agriculturally useful traits such as herbicide resistance, drought tolerance, high yielding traits, and high oleic acid content.

Effect of Organic Fertilizer Ratios on the Growth of Spiraea × bumalda 'Gold Mound' in the Container Green Wall Systems with Rainwater Utilization (빗물활용 벽면녹화 용기 내 유기질비료 배합비에 따른 노랑조팝나무의 생육 반응)

  • Ju, Jin-Hee;Kim, Hya-Ran;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1417-1423
    • /
    • 2011
  • For evaluating the effect of various organic fertilizer ratios on the Spiraea${\times}$bumalda 'Gold Mound' growth, a container green wall system experiment was conducted in a greenhouse at Konkuk university. The experimental planting grounds were prepared with different organic fertilizer ratios ($A_1L_0$, $A_8L_1$, $A_4L_1$ $A_2L_1$ and $A_1L_1$) and with drought tolerance and an ornamental value Spiraea${\times}$bumalda 'Gold Mound' was planted. The change in soil moisture contents, plant height, number of branches, number of dead leafs, number of leaf, number of shoots, length of node, length of leaf, width of leaf, root-collar caliper, chlorophyll contents and survival rate were investigated from April to Jun 2010. 1. The result of soil moisture contents was analyzed with weight unit in the container green wall system during the dry summer season. The soil moisture contents were significantly enhanced in the container green wall system in increasing order as the amount of fertilizer level increased $A_1L_1$ > $A_2L_1$ > $A_4L_1$ > $A_8L_1$ > $A_1L_0$. 2. Compared to the control treatment (amended soil with 100% + organic fertilizer 0%) application, the highest plant growth was observed in the treatment of $A_2L_1$(amended soil with 67% + organic fertilizer 13%) application. However, the differences between the organic fertilizer ratio treatments of $A_1L_1$, $A_4L_1$, $A_8L_1$, and the $A_1L_0$ organic fertilizer application were mostly not significant. 3. The survival rate increased with the increasing application of organic fertilizer, but in the control treatment (amended soil with 100% + organic fertilizer 0%) application all the plants died. Experimental results from the presented study clearly demonstrated that the organic fertilizer improved the survival rate more than the Spiraea${\times}$bumalda 'Gold Mound' growth at different levels of organic fertilizers. This strain can be utilized as a plant growth application in living wall systems during the dry summer season. Therefore, Spiraea${\times}$bumalda 'Gold Mound' is expected to be a highly valuable shrub for the green wall system if it should be considered in integration with stormwater retention or as a soil conditioner for increasing soil water contents in planting ground.

Determination of optimum gamma ray range for radiation mutagenesis and hormesis in quinoa (Chenopodium quinoa Willd.)

  • Park, Chan Young;Song, Seon Hwa;Sin, Jong Mu;Lee, Hyeon Young;Kim, Jin Baek;Shim, Sang In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.240-240
    • /
    • 2017
  • Quinoa (Chenopodium quinoa Willd.) is one of the ancient crops cultivated in the Andes region at an altitude of 3,500-4000m in Chile and Bolivia from 5000 BC. It contains a large amount of protein, minerals and vitamins in comparison with other crops. The cultivation area has been increasing worldwide because of its excellent resistance to various abiotic stress such as salinity, drought and low temperature. ${\gamma}$-Ray radiation of high dose is often used as a tool to induce mutations in plant breeding, but it has a deleterious effect on organisms. However, the radiation may have a positive stimulatory effect of 'hormesis' in the low dose range. This experiment was carried out to investigate the optimum dose range for creating the quinoa genetic resources and to investigate the hormesis effect at low dose on the quinoa. This experiment was performed for 120 days from November, 2016 to February, 2017 in the greenhouse of Gyeongsang National University. ${\gamma}$-Ray radiation was irradiated to seeds at 0 Gy, 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy and 1000 Gy for 8 hours. (50 Gy) using the low level radiation facility ($Co^{60}$) of Cooperative Research Institute of Radiation Research Institute, KAERI. Fifty seeds were placed on each petri dish lined with wet filter paper and germination rate was measured at a time interval of 2 hours for 40 hrs. The length of the root length was measured one week after germination. Each treatment was carried out in 3 replicates. The growth of seedlings were investigated for 10 days after transplanting of 30 day-old seedlings. The plant height, NDVI, SPAD, Fv/Fm, and panicle weight were measured. The germination rate was highest at 50Gy and 0Gy and the rate of seeds treated with 400Gy or higher rate decreased to 25% of the seeds treated with 50Gy. The emergence rate of seedling in pot experiment was higher at the dose of 200 Gy, 300 Gy and 400 Gy than at 0 and 50Gy. However, the rate was lower at strong radiation higher than 600Gy at which $1^{st}$ leaf was not expanded fully and dead due to extreme overgrowth at 44 days after treatment (DAT). The highest value of panicle weight was observed at 50Gy (6.15g) and 100Gy (5.57g). On the other hand, the weight at high irradiated dose of 300Gy and 400Gy was decreased by about 55% compared to low dose (50 Gy). NDVI measurement also showed the highest value at 50 Gy as the growth progressed. SPAD was the highest at 400 Gy and showed positive correlation with irradiation dose except 0 Gy. Fv/Fm was high at 50 Gy up to 30 DAT and no difference between treatments was observed except for 400 Gy from 44 DAT. The plant height was the highest in 50Gy during the growing period and was higher in the order of 50Dy, 100Gy, 0Gy, 200Gy, 300Gy and 400Gy in 88 DAT. In this experiment, the optimal radiation dose for hormesis was 50Gy and 100Gy, and the optimal radiation dose for mutagenesis seems to be 400 Gy.

  • PDF

Growth of Minuartia laricina, Arenaria juncea, and Corydalis speciose in Field with Various Soil Water Contents (토양 수분 함량에 따른 너도개미자리, 벼룩이울타리, 산괴불주머니의 노지 생육)

  • Gil, Min;Kwon, Hyuck Hwan;Kwon, Young Hyun;Jung, Mi Jin;Kim, Sang Yong;Rhie, Yong Ha
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.344-353
    • /
    • 2020
  • Plants native in Korea have not only ornamental values but also have excellent environmental adaptability, so they can be used as garden plants. Studies on proper volumetric water content (VWC) of substrates have been reported, but many have been conducted in glasshouse conditions where environmental factors were controlled. When considering garden planting, it is necessary to perform the automated irrigation system in outdoor conditions where rainfall occurs at frequent intervals. This research aimed to investigate the VWC suitable for the growth of Minuartia laricina, Arenaria juncea, and Corydalis speciosa in open filed. Sandy soil which consisted of particles of weathered rock was used, and the VWC of 0.15, 0.20, 0.25, and 0.30 ㎥·m-3 was maintained using an automated irrigation system with capacitance soil moisture sensors and a data logger. No significant differences in growth and antioxidant enzymes activity of A. juncea were observed among VWC treatments. However, the survival rate was low at VWC 0.30 ㎥·m-3 treatment, which was the highest soil moisture content. Even considering the efficiency of water use, we recommended that VWC 0.15-0.20 ㎥·m-3 is suitable for the cultivation of A. juncea. Minuartia laricina showed better growth with lower VWC. Because of frequent rainfall in open field, plant volume and survival rate was high even in VWC 0.15 ㎥·m-3 treatment. In C. speciosa, the plant height, number of shoots and lateral shoots, and fresh and dry weight were higher in plants grown in VWC 0.25 ㎥·m-3 as compared with that in the plants grown at 0.15, 0.20, and 0.30 ㎥·m-3. Based on these results, M. laricina needed less water in open filed, and A. juncea and C. speciosa required higher VWC, but excessive water should be avoided.

Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea (남·북한강과 경안천 합류 수역 팔당호의 수질 변동성에 대한 기상·수문학적 영향)

  • Hwang, Soon-Jin;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Choi, Bong-Geun;Eum, Hyun Soo;Park, Myung-Hwan;Noh, Hye Ran;Sim, Yeon Bo;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.354-374
    • /
    • 2016
  • This study explored spatiotemporal variability of water quality in correspondence with hydrometeorological factors in the five stations of Paldang Reservoir located in the Han River during 4 years from May 2012 to December 2015. Variability of basic water quality factors were largely related with seasonal fluctuations of hydrology. Temperature stratification occurred in the deep dam station, and prolonged hypoxia was observed during the draught year. Nitrogen nutrients were increased with decreasing inflow in which changing pattern of $NH_4$ reversed to $NO_3$ by the effect of treated wastewater effluent. Phosphorus increase was manifest during the period of high inflow or severe drought. Chl-a variation was reversely related with both flow change and AGP(algal growth potential) variations. Our study demonstrated that water quality variability in Paldang Reservoir was largely attributed to both natural and operational changes of inflow and outflow (including water intake) based on major pollution source of the treated wastewater (total amount of $472{\times}10^3m^3d^{-1}$) entering to the water system from watershed. In the process of water quality variability, meteorological (e.g., flood, typhoon, abnormal rainfall, scorching heat of summer) and hydrological factors (inflow and discharge) were likely to work dynamically with nutrients pulse, dilution, absorption, concentration and sedimentation. We underline comprehensive limnological study related to hydro-meteorolology to understand short- and long-term water quality variability in river-type large reservoir and suggest the necessity of P-free wastewater treatment for the effective measure of reducing pollution level of Paldang drinking water resource.

Anther Culture Efficiency affected by Growth Condition and Pre-treatment Methods in Barley (보리 생육환경 및 전처리 방법별 약배양 효율)

  • Park, Tae Il;Kim, Young Jin;Jeoung, Sun Ok;Kim, Hyun Soon;Seo, Jae Hwan;Yun, Song Joong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.31-38
    • /
    • 2008
  • This experiment was carried out to improve the anther culture efficiency of barley (Hordeum vulgare L.). Callus induction rates from anther cultures of the five domestic naked barley and four unhulled varieties ranged from 0 to 5.6%, and plant regeneration rate to callus was 30.4% in the donor plants grown in a greenhouse during winter, among which the green plant regeneration rates ranged from 0 to 4.4%. Plant regeneration rate was 30.4% in the donor plants grown in a greenhouse during winter, whereas 21.3% in the normal field condition in spring. In addition, callus induction rates were 19.2% in plants grown in a normal field and 7.2% in drought-stressed condition, respectively. Being Considered the anther culture efficiency affected by the sampling time, the optimum sampling stage of anthers was 3~4 days before heading when the length between the 1st and 2nd auricles reaches 5 to 10 cm and at the uninucleate of pollen which the tip of the 2nd auricle aligns with the middle of panicle in the leaf sheath. Best callus induction rates came from the anthers stored at $4^{\circ}C$ for 3 weeks in a 10 to 15 cm diameter polyethylene bag with 5 to 10 panicles and Duwonchapssalbori and Saessalbori showed the higher induction rate of 4.8% and 1.7%, respectively.