• Title/Summary/Keyword: Drought treatment

Search Result 214, Processing Time 0.025 seconds

Change in Growth of Chrysanthemum zawadskii var. coreanum as Effected by Different Green Roof System under Rainfed Conditions (빗물활용 옥상녹화 식재지반에 따른 한라구절초의 생육 변화)

  • Ju, Jin-Hee;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study aims to suggest a suitable soil thickness and soil mixture ratio of a green roof system by verifying the growth of Chrysanthemum zawadskii var. coreanum as affected by different green roof systems using rainwater. The experimental planting grounds were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios (SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) and with excellent drought tolerance. Ornamental value Chrysanthemum zawadskii var. coreanum was planted. The change in plant height, green coverage ratio, chlorophyll content, fresh weight, dry weight, and dry T/R ratio of Chrysanthemum zawadskii var. coreanum were investigated from April to October 2009. For 15cm soil thickness, the plant height of Chrysanthemum zawadskii var. coreanum was not significantly different as affected by the soil mixing ratio. However, it was found to be higher in the amended soil mixture, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ than in the sandy loam soil, as it was SL overall. For 25cm soil the plant height differences were in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was observed not to be different by soil mixing ratio with soil thickness of 15cm, but, the lowest green coverage ratio in the SL. In the 25cm soil thickness, the green coverage ratio was 86-89% with a good coverage rate overall. The change in chlorophyll contents with 15cm soil thickness was found to be the highest in the SL treatment and the lowest in the $P_5P_3L_2$ treatment. For 25cm thickness, the highest value was in the $P_4P_4L_2$ and SL, and the lowest in the$P_7P_1L_2$. Fresh weight and dry weight were larger in soil with 25cm thickness. Therefore, the growth of Chrysanthemum zawadskii var. coreanum as affected by a different green roof system for using rainwater was higher in soil with 25cm thickness than 15cm, and in PPL amended soil than in sandy loam.

Development of a Method for Determining the Instream Flow and Its Application: II. Application and Result (하천유지유량 결정 방법의 개발 및 적용: II. 적용 및 결과)

  • 김규호;김선미
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.185-202
    • /
    • 1996
  • The newly-developed method for estimating the instream flow, proposed by the authors (1996), was applied to the main channel reach of the Kum River basin in Korea. Performance of the suggested method was tested through the evaluations of the required flow, instream flow, and river-management flow which were estimated at five main reaches with each representative station. The mean drought flow was used as the object flow to evaluate the minimum instream flow for the mid- and large-size rivers. Water quality prediction by using the QUAL2E model was made for both cases that the planned wastewater treatment facilities may and may not be constructed. The required flow for the fish habitat was evaluated for 9 representative fish species. The instream flows required for the riverine aesthetics at Kong-ju and Puyo scenary points, for river navigation at natural channel conditions, and for current and potential recreation activities were evaluated, respectively. The instream flows required for other items are not quantified. On the whole, it is shown that the instream flow to maintain the natural riverine functions such as fish habitat, and riverine aesthetics govern the upstream reaches of the Kum River, and the artificial riverine functions such as conservation of water quality, navigation and recreations govern the middle and downstream reaches. Especially, it is found that the instream flow requirement depends largely upon the construction of wastewater treatment facilities at the Kum River basin.

  • PDF

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Optimization of Water Reuse System under Uncertainty (불확실성을 고려한 하수처리수 재이용 관로의 최적화)

  • Chung, Gun-Hui;Kim, Tae-Woong;Lee, Jeong-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.

Variety and phosphate fertilizer dose effect on nutrient composition, in vitro digestibility and feeding value of cowpea haulm

  • Ansah, Terry;Algma, Henry Ayindoh;Dei, Herbert Kwabla
    • Journal of Animal Science and Technology
    • /
    • v.58 no.6
    • /
    • pp.19.1-19.7
    • /
    • 2016
  • Background: Cowpea (Vigna unguiculata [L.]) is a legume cultivated throughout most tropical countries and is valued as food and feed for human and livestock respectively. The search for an improved cowpea variety has been on-going with the aim of improving traits such as grain yield, drought and pest resistance. But no information exist on the feeding value of these improved varieties. Phosphate (P) fertilizer application is recommended to augment grain yield in grain legumes but data on the effect of P fertilizer on haulm quality is limited. Results: Two separate experiments were conducted to determine the effect of P fertilizer dose on the nutritive value of haulms from different cowpea varieties (V). In experiment 1, effect of three P doses (30, 60 and 90 kg $P_2O_5/ha$) on in vitro gas production (IVGP) characteristics, concentrations of digestible organic matter (DOM), crude protein (CP), acid detergent fiber (ADF) and neutral detergent fiber (NDF) of haulms from five cowpea varieties (Zaayura-SARC 4-75, Songotra-IT97K-499-35, Hewale-IT93K-192-4, IT99K 573-1-1 and Asomdwe-IT94K-410-2) were investigated using the $3(P){\times}5(V)$ factorial treatment arrangements in a completely randomized design. In experiment 2, the effects of two P doses (30 and 90 kg $P_2O_5/ha$) and two varieties (Zaayura-SARC 4-75 and Hewale-IT93K-192-4) on the voluntary feed intake, live weight, haematology and carcass characteristics of Djallonke lambs were also assessed using a $2(P){\times}2(V)$ factorial treatment arrangement. The $V{\times}P$ interaction significantly affected CP, NDF and ADF with CP concentration increasing with increase in P doses in Zaayura-SARC 4-75 and Asomdwe-IT94K-410-2. Whilst an increase (P < 0.05) in NDF was observed in Songotra-IT97K-499-35and Asomdwe-IT94K-410-2 as P doses increased, the other V only increased from P dose 30 to 60 kg/ha and declined at P dose 90 kg/ha. The ADF decreased (P < 0.05) with increase in P dose for all V with the exception of Songotra-IT97K-499-35. There was a significant V effect on DOM with the highest reported in Zaayura-SARC 4-75 (43.44 %). Daily DM intake, carcass length and blood urea nitrogen of the lambs were significantly affected by the V x P interaction. There was a significant V effect on globulin and P effect on live weight at slaughter, dressed weight, chuck, leg, loin, rib and flank and liver and lungs. Conclusion: It can be concluded that nutrient concentrations of cowpea haulms were positively influenced by different P dose and varieties with favorable effects on growth, haematology and carcass composition of lambs. Varieties Zaayura-SARC 4-75 and Hewale-IT93K-192-4 at P dose at 90 kg/ha are recommended to enhance growth performance and carcass yield of Djallonke lambs.

Effect of Experimental Warming on Physiological and Growth Responses of Larix kaempferi Seedlings (실외 온난화 처리에 따른 낙엽송 묘목의 생리 및 생장 반응)

  • An, Jiae;Chang, Hanna;Park, Min Ji;Han, Seung Hyun;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.77-84
    • /
    • 2016
  • Seedling stage is particularly important for tree survival and is easily influenced by warming. Therefore, air temperature being increased due to climate change may affect physiological traits and growth of seedlings. This study was conducted to investigate the physiological and growth responses of Larix kaempferi seedlings to open-field experimental warming. 1-year-old and 2-year-old L. kaempferi seedlings were warmed with infrared lamps since April 2015 and April 2014, respectively. The seedlings in the warmed plots were warmed to maintain the air temperature to be $3^{\circ}C$ higher than that of the control plots. Physiological responses (stomatal conductance, transpiration rate, net photosynthetic rate and total chlorophyll content) and growth responses (root collar diameter (RCD), height and biomass) to experimental warming were measured. Physiological and growth responses varied with the seedling ages. For 2-year-old L. kaempferi seedlings, stomatal conductance, transpiration rate and net photosynthetic rate decreased following the warming treatment, whereas there were no changes for 1-year-old L. kaempferi seedlings. Meanwhile, total chlorophyll content was higher in warmed plots regardless of the seedling ages. Net photosynthetic rate linked with stomatal conductance also decreased due to the drought stress and decrease of photosynthetic efficiency. In response to warming, RCD, height and biomass did not show significant differences between the treatments. It seems that the growth responses were not affected as much as physiological responses were, since the physiological responses were not consistent, nor the warming treatment period was enough to have significant results. In addition, multifactorial experiments considering the impact of decreased soil moisture resulting from elevated temperatures is needed to explicate the impacts of a wide range of possible climate change scenarios.

Investigation of Emergence Conditions and Plug Seedling Periods in Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. (지황의 출아조건 및 플러그 육묘기간 구명 연구)

  • Lee, Sang Hoon;Koo, Sung Cheol;Hur, Mok;Lee, Woo Moon;Park, Min Su;Han, Jong Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • Background: Rehmannia glutinosa (Gaertn.) Libosch. ex Steud. has long been used as a traditional medicinal plant in Korea. This study was carried out to investigate the emergence conditions during the seedling periods in R. glutinosa. Methods and Results: The rhizomes of R. glutinosa variety (Jihwang 1) were harvested in the 22, March, 2018. The rhizomes were sown on in 50-cell plug trays. The emergence rates of seedlings at $15^{\circ}C$, $20^{\circ}C$, $25-40^{\circ}C$, and $45^{\circ}C$ treatment seedling were 1.3%, 96%, 100% and 0%, respectively. Rhizome rot was occurred at the temperature of $15^{\circ}C$ and $45^{\circ}C$. The emergence rates of seedlings in high moisture (HM), moderate moisture (MM) and low moisture (LM) treatments at $35^{\circ}C$ were 99.3%, 100%, and 0%, respectively. Drought damage was recorded in plant with the LM treatment. Seedling quality surveys were carried out at 10-days intervals from 10 to 60 days after sowing (DAS). Leaf length and leaf width were increasing until 50 DAS and the number of leaves was increasing until 60 DAS. Root length was increasing until 40 DAS, and then, flowering occurred from 30 to 60 DAS. Lastly, at 40 DAS, leaf aging and root enlargement was observed. Conclusions: We concluded that the emergence of seedlings was possible in the range of 20 to $40^{\circ}C$. Considering drying and rotting damage, we concluded that the moderate level of moisture is most appropriate for seedling emergence. In addition, we concluded that optimal seedling periods are between 30 and 40 DAS.

Influences of Discharge Waters from Wastewater Treatment Plants on Rice (Oryza sativa L.) Growth and Percolation Water Salinity (폐수처리장 방류수 관개가 벼생육 및 침출수 염농도에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Lee, Chang-Eun;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • Objective of this study was to assess rice growth and percolation water salinity under the irrigation of the discharge waters from the municipal wastewater treatment plant and from the industrial wastewater treatment plant as alternative water resources during transplanting season. Three kinds of waters were irrigated; the discharge water from an industrial wastewater treatment plant (DIWT), the discharge water from the municipal wastewater treatment plant (DMWT), and groundwater. Concentrations of $COD_{er}$, $NH_4{^+}_-N$, $Mn^{2+}$, and $Ni^+$ in DIWT, SS content and $PO_4-P$ concentrations in DMWT were higher than those of reuse water criteria of other country for agricultural irrigation. The plant height in the irrigation of DMWT was shorter by 2 cm than the groundwater irrigation except for 10 days irrigation. However, the number of tillerings was not significantly different between DMWT and the groundwater. For the harvest index, there were no significant difference between DMWT and DIWT for 20 days irrigation, but slightly higher in DIWT than that of DMWT for 30 days irrigation regardless of soil types. The salinity of percolation water in the rhizosphere with irrigation of DIWT had more twofold than DMWT, but SAR value from DMWT had no significantly different from the groundwater irrigation. The average $EC_i$ values in the rooting zone irrigated with DIWT and DMWT for 30 days after rice transplanting were 4.7 and $3.4dS\;m^{-1}$ in clay loam soil, and were 3.5 and $2.5dS\;m^{-1}$ in sandy loam soil, respectively. There was dramatic decrease in $EC_i$ value at 30 days after rice transplanting even though $EC_i$ of DIWT had more twofold than DMWT. However, $EC_i$ from DMWT had no significant difference from the groundwater. Therefore, it might be considered that there was limited possibility to irrigate DMWT to overcome drought injury of rice transplanting season in paddy field.

Evaluation of Hydrophilic Polymer on the Growth of Plants in the Extensive Green Roofs (저관리형 옥상녹화 식물생육을 위한 Hydrophilic polymer의 효용성)

  • Yang, Ji;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.3
    • /
    • pp.357-364
    • /
    • 2014
  • This study aimed to determine effects of the use of water-retention additive, hydrophilic polymer, for extensive green roofs on growth of Juniperus chinensis var. sargentii and Euonymus fortunei 'Emerald and Gold' for woody plants, and Carex kobomugi and Carex pumila for herbaceous plants. Five different contents of hydrophilic polymer including 0% (Control), 1.0%, 2.5%, 5.0%, and 10% (polymer: medium (w/w), dry weight basis) were added to each of the container filed with a 100 kg of growth medium. Ten of plants were transplanted in each of square container ($1m(L){\times}1m(W){\times}0.3m$ (H)) built on the roof platforms in randomized complete block design in the $20^{th}$ of May, 2013. In results, excessively high volumetric soil water content, about 97-98%, was found in the substrate under elevated hydrophilic polymer concentration of at least 2.5%, during the entire growing period. The moisture content of the substrate containing 1.0% of hydrophilic polymer was higher about 20% in the range between 70% and 80%, compared tho that of Control substrate in the range between 50% and 60%, for 27 days after transplanting prior to abundant rainfall, indicating that the application of hydrophilic polymer to the extensive green roof substrate is effective to eliminate drought condition by retaining water in the substrate. Euonymus fortunei 'Emerald and Gold' and Carex kobomugi resulting in higher plant growth with 2.5% than those of the other treatment plants. Juniperus chinensis var. sargentii was observed the highest growth under 1.0% hydrophilic polymer treatement, and Carex pumila was founded the best growth with Control respectively. Plants that grown in both the 1.0% and 2.5% hydrophilic polymer survived all, while the plants that grown in the 5.0% and 10% hydrophilic polymer died after 3 months. These results suggest that advantage of the addition of hydrophilic polymer may be greater in drought-tolerant plants, but the mixture proportion of hydrophilic polymer should be determined according to the different features of the plant species being grown.

Enhancement of Plant Growth and Drying Stress Tolerance by Bacillus velezensis YP2 Colonizing Kale Root Endosphere (Bacillus velezensis YP2 균주의 근권 정착에 의한 케일의 생육 촉진 및 건조 스트레스 완화 효과)

  • Kim, Da-Yeon;Han, Ji-Hee;Kim, Jung-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.217-232
    • /
    • 2018
  • Drought is a major obstacle to high agricultural productivity, worldwide. In drought, it is usually presented by the simultaneous action of high temperature and drying. Also there are negative effects of plant growth under drying conditions. In this study, the effect of Bacillus velezensis YP2 on plant growth-promotion and soil drying stress tolerance of kale plants, Brassica oleracea var. alboglabra Bailey, were investigated under two different conditions; greenhouse and field environments. Root colonization ability of B. velezensis YP2 was also analysed by using plating culture method. As a result of the greenhouse test, the YP2 strain significantly promoted the growth of kale seedlings in increasement of 26.7% of plant height and 142.2% of shoot fresh weight compared to control. B. velezensis YP2 have the mitigation effect of drying injury of kale by decreasing of 39.4% compared to control. In the field test, B. velezensis YP2 strain was also found to be effective for plant growth-promotion and mitigation of drying stress injury on kale plants. Especially, relative water contents (RWC; %) were higher in B. velezensis YP2 treated kales than in control at 7, 10, 14 day after non-watering. The root colonization ability of YP2 strain was continued at least for 21 days after soil drenching treatment of B. velezensis YP2. Our result suggested that enhancement of plant growth and drying injury reduction of kale plants were involved in kale root colonization by B. velezensis YP2, which might be contributed to increasing water availability of plants. Consequentially, the use of B. velezensis YP2 might be a beneficial influence for improving productivity of kale plants under drying stress conditions.