• Title/Summary/Keyword: Droplet Dynamics

Search Result 99, Processing Time 0.022 seconds

Simulation of The Effective Distribution of Droplets and Numerical Analysis of The Control Drone-Only Nozzle (방제드론 전용노즐의 유효살포폭 내 액적분포 및 수치해석 시뮬레이션)

  • Jinteak Lim;Sunggoo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.531-536
    • /
    • 2024
  • Control drones, which are recently classified as smart agricultural machines in the agricultural field, are striving to build smart control and automatic control systems by combining hardware and software in order to shorten working hours and increase the effectiveness of control in the aging era of rural areas. In this paper, the characteristics of the nozzle dedicated to the control drone were analyzed as a basic study for the establishment of management control and automatic control systems. In order to consider various variables such as the type of various drone models, controller, wind, flight speed, flight altitude, weather conditions, and UAV pesticide types, related studies are needed to be able to present the drug spraying criteria in consideration of the characteristics and versatility of the nozzle. Therefore, to enable the consideration of various variables, flow analysis (CFD) simulation was conducted based on the self-designed nozzle, and the theoretical and experimental values of the droplet distribution were compared and analyzed through water reduction experiments. In the future, we intend to calculate accurate scattering in consideration of various variables according to drone operation and use it in management control and automatic control systems.

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Analysis of Fire Suppression Efficiency for Intermittent Water Spray Pattern by Fire Dynamics Simulator (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.216-220
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively lower than that of larger water droplet and the infiltration of water mist to the fire source is not effective. Contribution of evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist pattern is expected to improve the penetration force of water mist as well as the air expelling capability with the stratified spray characteristics. At this paper, we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis can support the basic concept to the development of the prototype of water mist nozzle.

Computational Fluid Dynamics for Enhanced Uniformity of Mist-CVD Ga2O3 Thin Film (Ga2O3초음파분무화학기상증착 공정에서 유동해석을 이용한 균일도 향상 연구)

  • Ha, Joohwan;Lee, Hakji;Park, Sodam;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.81-85
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity method since the precursor solution is misting with an ultrasonic generator and reacted on the substrate under vacuum-free conditions of atmospheric pressure. However, since the deposition distribution is not uniform, various efforts have been made to derive optimal conditions by changing the angle of the substrate and the position of the outlet to improve the result of the preceding study. Therefore, in this study, a deposition distribution uniformity model was derived through the shape and position of the substrate support and the conditions of inlet flow rate using the particle tracking method of computational fluid dynamics (CFD). The results of analysis were compared with the previous studies through experiment. It was confirmed that the rate of deposition area was improved from 38.7% to 100%, and the rate of deposition uniformity was 79.07% which was higher than the predicted result of simulation. Particle tracking method can reduce trial and error in experiments and can be considered as a reliable prediction method.

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

Study of the Periodic Ludwieg Tube Flow with Heat Addition (가열을 수반하는 Ludwieg Tube 유동에 대한 연구)

  • Baek, S.C.;Kwon, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.450-455
    • /
    • 2001
  • The time-dependent behavior of nonequilibrium condensation of moist air through the Ludwieg tube is investigated with a computational fluid dynamics(CFD) method. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The computational results are compared with the previous experiments using the Ludwieg tube with a downstream diaphragm. The results clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to nonequilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity, and the periodic excursions of the condensation shock wave are responsible for the total pressure loss.

  • PDF

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

Numerical Study about Influence Variables of Permafrost Pipeline by using Thermal Flow Analysis (극한지 온도조건에 파이프라인 내부 열유동 영향변수 평가)

  • Jo, Chul H.;Hwang, Su-Jin;Jang, Choon-Man;Lee, Jun-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.443-448
    • /
    • 2014
  • This paper describes thermal flow characteristics in various pipelines: straight pipeline and curved pipeline. In the permafrost area, pipelines are exposed to an extremely low temperature ($-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics of permafrost pipelines on the vertical support members above ground.

Effect of Main Operating Conditions on Cathode Flooding Characteristics in a PEM Unit Fuel Cell (고분자전해질형 단위 연료전지의 주요 작동 조건이 공기극 플러딩 현상에 미치는 영향)

  • Min Kyoung-Doug;Kim Han-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.489-495
    • /
    • 2006
  • Proton exchange membrane (PEM) should be sufficiently hydrated with a careful consideration of heat and water management. Water management has been a critical operation issue for better understanding the operation and optimizing the performance of a PEM fuel cell. The flooding on cathode side resulting from excess water can limit the fuel cell performance. In this study, the visual cell was designed and fabricated fur the visualization of liquid water droplet dynamics related to cathode flooding in flow channels. The experiment was carried out to observe the formation, growth and removal of water droplets using CCD imaging system. Effects of operating conditions such as cell temperature, air flow rate and air relative humidity on cathode flooding characteristics were mainly investigated. Based on this study, we can get the basic insight into flooding phenomena and its two-phase flow nature. It is expected that data obtained can be effectively used fur the setup and validation of two-phase PEM fuel cell models considering cathode flooding.