• Title/Summary/Keyword: Drop-Through Die

Search Result 11, Processing Time 0.029 seconds

A comparative analysis of sheeting die geometries using numerical simulations

  • Igali, Dastan;Wei, Dongming;Zhang, Dichuan;Perveen, Asma
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.111-125
    • /
    • 2020
  • The flow behavior of polymer melts within a slit die is an important consideration when designing a die geometry. The quality of the extruded polymer product can be determined through an evaluation of the flow homogeneity, wall shear rate and pressure drop across the central height of the die. However, mathematical formulations cannot fully determine the behavior of the flow due to the complex nature of fluid dynamics and the nonlinear physical properties of the polymer melts. This paper examines two slit die geometries in terms of outlet velocity uniformity, shear rate uniformity at the walls and pressure drop by using the licensed computational fluid dynamics package, Ansys POLYFLOW, based on the finite element method. The Carreau-Yasuda viscosity model was used for the rheological properties of the polypropylene. Comparative analysis of the simulation results will conclude that the modified die design performs better in all three aspects providing uniform exit velocity, uniform wall shear rates, and lower pressure drop.

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹 가공 특성에 관한 연구)

  • 이광복;이용길;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

An Analysis of the Polymer Melt Flow in Extruder Dies (고분자압출 다이스의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Extrusion is one of the most important operations in the polymer-processing industry. Balancing the distribution of flow through a die to achieve a uniform velocity distribution is the primary objective and one of the most difficult tasks of extrusion die design. If the manifold in a coat-hanger die is not properly designed, the exit velocity distribution may be not uniform; this can affect the thickness across the width of the die. Yet, no procedure is known to optimize the coat hanger die with respect to an even velocity profile at the exit. While optimizing the exit velocity distribution, the constraint optimization used in this work with allowable pressure drop in the die; according to this constraint we can control the pressure in the die. The computational approach incorporates three-dimensional finite element simulations software STAR-CCM+. These simulations are used with numerical optimization to design polymer coat hanger dies with pressure drop, uniform velocity and temperature variation across the die exit.

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹가공 특성에 관한 연구)

  • Lee K. B.;Lee Y. G.;Kim J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.29-34
    • /
    • 2003
  • In order to study the shearing characteristics of anti-vibration sheet metal which has been bonded by resin, a blanking die of 40.02mm was manufactured to blank a material and it is used to reduce vibrational noise. The variables employed in this study were 1) Clearance 2) types of stripper plate, and 3) types of the die design technique. These variables were used to study the effects on burr height, diameter of product, and camber height. Lastly, the effect of the position of the rubber during blanking was observed. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, resulted in the concentration of additional pressure between the cutting edges, meaning the crack initiation was delayed. This result was not affected by lubrication, although appropriate lubrication is preferred to enable a longer lasting die in terms of wear, which results from the presence of adhesive as the sheet metal is blanked. In the comparison of diameter measurement, the push-back die, combined with the back pressure from the knock-out plate showed a favorable precision. The use of the push back die with a fixed stripper plate, with a $4.5\%$ clearance, showed better accuracy in the diameter measurement. For comparing camber height, the push back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber is laying on the top, blanked with a fixed-stripper plate in a push-back die, with a $4.5\%$ clearance.

  • PDF

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Voltage Optimization of Power Delivery Networks through Power Bump and TSV Placement in 3D ICs

  • Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.643-653
    • /
    • 2014
  • To reduce interconnect delay and power consumption while improving chip performance, a three-dimensional integrated circuit (3D IC) has been developed with die-stacking and through-silicon via (TSV) techniques. The power supply problem is one of the essential challenges in 3D IC design because IR-drop caused by insufficient supply voltage in a 3D chip reduces the chip performance. In particular, power bumps and TSVs are placed to minimize IR-drop in a 3D power delivery network. In this paper, we propose a design methodology for 3D power delivery networks to minimize the number of power bumps and TSVs with optimum mesh structure and distribute voltage variation more uniformly by shifting the locations of power bumps and TSVs while satisfying IR-drop constraint. Simulation results show that our method can reduce the voltage variation by 29.7% on average while reducing the number of power bumps and TSVs by 76.2% and 15.4%, respectively.

Prediction of the wire temperature in a high carbon steel drawing process (고탄소강의 다단 인발 공정에서의 선재의 온도 예측)

  • Kim, Young-Sik;Kim, Yong-Chul;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.821-825
    • /
    • 2000
  • Drawing is one of the oldest metal forming operations and has major industrial significance. This process allows excellent surface finishes and closely controlled dimensions to be obtained in long products that have constant cross sections. In drawing of the high carbon steel wire, exit speeds of several hundreds meters per minute are very common. Drawing is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process like this, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. In this paper, therefore, to estimate the wire temperature in multi-stage wire drawing process, wire temperature prediction method was mathematically proposed. Using this method, temperature rise at deformation zone as well as temperature drop between die exit and the next die inlet were calculated.

  • PDF

Development of Isothermal Pass Schedule Program for the Re-design of a Continuous High Carbon Steel Wire Drawing Process (고탄소강 연속 신선 공정의 재설계를 위한 등온패스스케줄 프로그램의 개발)

  • Kim, Young-Sik;Kim, Dong-Hwan;Kim, Byung-Min;Kim, Min-An;Park, Yong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-64
    • /
    • 2001
  • The high speed in the wire-drawing process to meet the demands for the increased productivity has a great effect on the heat generated due to plastic deformation and friction between the wire and the drawing dies. During the high carbon steel wire drawing process, the temperature rise gives a great influence to the fracture of wire. In this paper, to control the temperature rise in the wire after the deformation through the drawing die, the calculation method of the wire temperature, which includes the temperature rise in the deformation zone as well as the temperature drop in the block considering the heat transfer among the wire, cooling water and surrounding air, is proposed. These calculated results of the wire temperature at the inlet and exit of the drawing die at each pass are compared with the measured wire temperatures and verified its efficiency. So, using the program to predict the wire temperature, the isothermal pass schedule program was developed. By applying this isothermal pass schedule program to the conventional process condition, a new isothermal pass schedule is redesigned through all passes. As a result, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

  • PDF

Study on forming Process of Piston Crown Using Near Net Shaping Technology (재료이용율 향상을 위한 피스톤 크라운 성형공정 연구)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, H.S.;Choi, I.J.;Baek, D.K.;Choi, S.K.;Park, Y.B.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF

Development of two-component polyurethane metering system for in-mold coating (인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발)

  • Seo, Bong-Hyun;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.