• Title/Summary/Keyword: Drop tube furnace

Search Result 43, Processing Time 0.021 seconds

Studies on Coal Combustion Characteristics and NOx Emission and Reduction in the Drop Tube Furnace (DTF를 이용한 석탄연소특성과 NOx 발생 및 저감에 관한 연구)

  • Han, Woong;Park, Chu-Sik;Choi, Sang-Il;Lee, Ik-Hyung;Yang, Hyun-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.85-95
    • /
    • 1999
  • The objective of this study was to obtain basic data for the staged combustion toward the NOx reduction in coal combustion. Combustion and NOx emission/reduction were investigated by using DTF. NOx emission was decreased with decreasing air ratio and with increasing volatile content in coal. In particular, effective NOx reduction was achieved at high temperature at the onset of combustion with fuel rich condition.

  • PDF

Effect of High Ash Coal on Unburned Carbon and NOx Emission (미연분 및 NOx배출 특성에 대한 고회분탄의 영향 연구)

  • Kim, Sangin;Lee, Byunghwa;Lim, Ho;An, Keju;Kim, Mancheol;Song, Juhun;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.341-342
    • /
    • 2012
  • The effect of high ash coal which has relatively high ash content and low combustibility on unburned carbon and NOx emission was experimentally investigated at several excess air ratio and particle size conditions of four coals containing different ash content in a drop tube furnace. Flue gas was measured by Gas analyzer in order to figure out unburned carbon characteristics. The results show that the higher content of ash makes the higher unburned carbon rate, subsequent changes in NOx emission characteristics was investigated.

  • PDF

Pyrolysis Behavior of Pulverized Coal Particles at High Heating Rate (미분탄 입자의 고속가열 열분해거동 해석)

  • JANG, JIHOON;HAN, KARAM;YU, GEUN SIL;LIM, HYEON SOO;LEE, WOOK RYUN;PARK, HO YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.260-268
    • /
    • 2019
  • The pyrolysis characteristics of pulverized coal particle was numerically analyzed with the drop tube furnace. Based on the simulated gas flow field in the drop tube furnace, the particle velocity, temperature and volatile evolution were calculated with the fourth order Runge-Kutta method. The effects of changes in reactor wall temperature and particle diameter on the pyrolysis behavior of coal particle were investigated. The particle heating rate was very sensitive to the reactor wall temperature and particle size, that is, the higher wall temperature and the smaller particle size resulted in the higher heating rate and the consequent quicker volatile evolution.

Char Oxidation Characteristics of High Ash Coal in Drop Tube Furnace (고회분탄의 촤 산화 반응 특성 연구)

  • An, Ke-Ju;Lee, Byoung-Hwa;Kim, Sang-In;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.405-413
    • /
    • 2013
  • The char oxidation characteristics of high ash coal were experimentally investigated at several temperatures (from 900 to $1300^{\circ}C$) for 4 types of coals (Gunvor, Glencore, Noble, and ECM) under atmospheric pressure in a drop tube furnace (DTF). The char reaction rate was calculated from the exhaust gas concentrations (CO and $CO_2$) using FT-IR, and the particle temperature was measured using the two-color method. In addition, the activation energy and pre-exponential factor for high ash coal char were calculated based on the Arrhenius equation. The results show that as the ash content increases, the particle temperature and area reactivity decreases. This is because in high ash coal, the large heat capacity of the ash, ash vaporization, and relatively low fixed carbon content of ash suppress combustibility during char oxidation. As a result, the higher ash content of coal leads to high activation energy.

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace (DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;Lim, Ho;Yu, Da-Yeon;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.675-681
    • /
    • 2012
  • The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

Study on the Unburned Carbon and NOx emission of High Moisture Coal (고수분탄의 건조에 따른 미연분 및 NOx 배출 특성에 관한 연구)

  • Ahn, Seok-Gi;Kim, Jung-Woo;Kim, Gyu-Bo;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.53-61
    • /
    • 2016
  • Unburned Carbon(UBC) and NOx emissions from High-moisture coal and Dried coal were investigated in Drop Tube Furnace(DTF). When the same amount of the High-moisture coal and Dried coal were oxidized in DTF, the results show that UBC and NOx emissions of Dried coal case is higher than High-moisture coal case. As the moisture in coal decreases from 40% to 10%, the average gas temperature increases but the moisture concentration in DTF decreases. As the wall temperature increases from $900^{\circ}C$ to $1500^{\circ}C$, the UBC decreases and NOx emissions increases. Especially, the difference for UBC between High-moisture coal and Dried coal decreases with increasing wall temperature.

Effect of Ash Content on Unburned Carbon and NOx Emission in a Drop Tube Furnace (DTF 를 이용한 석탄 회분 함량에 따른 미연분 및 NOx 배출 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;An, Ke-Ju;Kim, Man-Cheol;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.963-969
    • /
    • 2014
  • Four coal sources that had different ash contents were evaluated in a drop tube furnace (DTF). Combustion experiments were conducted by using several sources with different particle sizes and excess air ratios under air-staging conditions to determine the optimized combustion conditions of high-ash coal, with an emphasis on the combustion efficiency and NOx emissions. The results show that the higher ash content results in a large amount of carbon remaining unburned, and that this effect is dominant when the largest particle size is used. Furthermore, the ash content of coal does affect the Char-NOx concentration, which decreases with the particle size. The results of this study suggest that an air-staged system can be useful to reduce the NOx emissions of high-ash coal and that control of the air stoichiometric ratio of the primary combustion zone (SR1) is effective for reducing NOx emissions, especially by considering unburned carbon contents.

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.