• Title/Summary/Keyword: Drop simulation

Search Result 760, Processing Time 0.031 seconds

NUMERICAL ANALYSIS OF THE IMPACTING AND SPREADING DYNAMICS OF THE ELLIPSOIDAL DROP ON THE PERFECT NON-WETTING SOLID SURFACE (완전 비습윤 고체 표면 위 타원형 액적의 충돌 및 퍼짐 거동에 대한 수치적 연구)

  • Yun, S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.90-95
    • /
    • 2016
  • Leidenfrost drops with ellipsoidal shaping can control the bouncing height by adjusting the aspect ratio(AR) of the shape at the moment of impact. In this work, we focus on the effect of the AR and the impact Weber number(We) on the non-axisymmetrical spreading dynamics of the drop, which plays an important role in the control of bouncing. To understand the impact dynamics, the numerical simulation is conducted for the ellipsoidal drop impact upon the perfect non-wetting solid surface by using volume of fluid method, which shows the characteristics of the spreading behavior in each principal axis. As the AR increases, the drop has a high degree of the alignment into one principal axis, which leads to the consequent suppression of bouncing height with shape oscillation. As the We increases, the maximum spreading diameters in the principal axes both increase whereas the contact time on the solid surface rarely depends on the impact velocity at the same AR. The comprehensive understanding of the ellipsoidal drop impact upon non-wetting surface will provide the way to control of drop deposition in applications, such as surface cleaning and spray cooling.

A novel gain-clamping technique for EDFA in WDM add/drop networks (WDM add/drop망에서 EDFA의 새로운 이득제어 방법)

  • 박정문;신서용;송성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.363-369
    • /
    • 2004
  • We propose, for the first time to our knowledge, a novel gain-clamping method for EDFA in WDM add/drop networks by introducing a disturbance observer technique. The control input signal for gain-clamping is composed of a nominal control signal and an additional control signal of compensating the gain fluctuations caused by channel add/drops. Based on disturbance observer technique, we designed the additional control signal such that it has the compensating information of estimated disturbance resulted from channel add/drops. The circuit for generating additional control signal can easily be implemented by using simple electronic devices. We proved the superiority of the new technique over the previous ones by showing simulation results of minimized dips and spikes that appear in power profile of EDFA in the process of channel add/drops.

A study on tunable Add/Drop filter using Fiber Bragg Gratings (광섬유 bragg grating을 이용한 가변형 add/drop 필터에 관한 연구)

  • 박무윤;박광노;이경식;원용협;이상배
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.15-24
    • /
    • 1997
  • We propose a tunable add/drop filter in a form of an all-fiber mach-zehnder interferometer iwth one bragg grating at each arm. This device can be tuned by inducing a strain in the bragg grating. We also theoretically analyze the outut characteristics of the tunable add/drop filter. As a result of simulation, we know that the proposed tunable add/drop filter works well. When 2*10$^{-3}$ of strain is induced, the reflected spectrum shifts about 3nm. And its reflected spectral width is about 0.3nm. In this case roughly 5 channels can be tuned, assuming the channel spacing is 0.3nm. When the pathlengths of the both arms are not the same, the transmissivities at the add and output ports and the reflectivity at the tap port varies sinusoidally with the pthlength difference. To maintain the transmissivities above 90% in the wavelength tuning range of 20nm the pathlength difference less than 16.mu.m is required.

  • PDF

A Study on Voltage Drop Compensation by STATCOM Considering Dynamic Characteristics of the 3-Phase Induction Motor in Electric Railway Systems (전기철도 3상유도전동기의 기동특성을 고려한 STATCOM에 의한 전압강하 보상에 관한연구)

  • Hwang, Sung-Ho;Oh, Min-Hyuk;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.337-339
    • /
    • 2005
  • The purpose of this paper is to compensate the voltage drop of the power system in the AC High-Speed Railway (HSR). Reactive power compensation is often the most effective way to improve system voltage drop. The suitable modeling of the electric railway system should be applied to the EMTP. the dynamic characteristics of 3-Phase Induction Motor in Electric Railway Systems is considered for precise modeling. it is shown through EMTP simulation that voltage drop can be compensated effectively by STATCOM.

  • PDF

Ionic Size Effect on the Double Layer Properties: A Modified Poisson-Boltzmann Theory

  • Lou, Ping;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2553-2556
    • /
    • 2010
  • On the basis of a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, the analytic expression for the effect of ionic size on the diffuse layer potential drop at negative charge densities has been given for the simple 1:1 electrolyte. It is shown that the potential drop across the diffuse layer depends on the size of the ions in the electrolyte. For a given electrolyte concentration and electrode charge density, the diffuse layer potential drop in a small ion system is smaller than that in a large ion system. It is also displayed that the diffuse layer potential drop is always less than the value of the Gouy-Chapman (GC) theory, and the deviation increases as the electrode charge density increases for a given electrolyte concentration. These theoretical results are consistent with the results of the Monte-Carlo simulation [Fawcett and Smagala, Electrochimica Acta 53, 5136 (2008)], which indicates the importance of including steric effects in modeling diffuse layer properties.

Improvement on Pressure Drop Performance of Flow Control Disk in Portable Resuscitator (CFD 해석을 통한 인공호흡기 유량조절디스크의 압력 강하 성능개선)

  • Kim, Young-Soo;Kim, Min-Wook;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Cases of cardiac arrests due to cardiovascular ailments have increased recently., portable Current portable resuscitators which can be automatically supply oxygen operated by the pressure of supplied oxygen without manual or electronic actuators are now widely used in emergency worldwide. However, reductions in Pressure drop characteristics through the extended use of this type of resuscitator, however, is are not well-known described. This paper describes the reduction in pressure loss drop performance of the various holes in within the flow control disc of with various hole size of the portable resuscitators using on breathing resistance through the CFD simulation, and suggests the an optimum optimal design of the hole shapes for the minimization of alteration in order to minimize this pressure drops.

Capless Low Drop Out Regulator With Fast Transient Response Using Current Sensing Circuit (전류 감지 회로를 이용한 빠른 과도응답특성을 갖는 capless LDO 레귤레이터)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.552-556
    • /
    • 2019
  • This paper present a capless low drop out regulator (LDO) that improves the load transient response characteristics by using a current regulator. A voltage regulator circuit is placed between the error amplifier and the pass transistor inside the LDO regulator to improve the current characteristics of the voltage line, The proposed fast transient LDO structure was designed by a 0.18 um process with cadence's virtuoso simulation. according to test results, the proposed circuit has a improved transient characteristics compare with conventional LDO. the simulation results show that the transient of rising increases from 1.954 us to 1.378 us and the transient of falling decreases from 19.48 us to 13.33 us compared with conventional capless LDO. this Result has improved response rate of about 29%, 28%.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.

Molecular Dynamics Simulation of a Small Drop of Liquid Argon

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3805-3809
    • /
    • 2012
  • Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.

A Study on the Drop Formation of the Liquid Jet Device for Rapid Prototyping (신속 시작법용 액적 생성 장치에서의 액적 생성에 대한 연구)

  • Lee, U-Il;Kim, Seon-Min;Park, Jong-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1021-1029
    • /
    • 2001
  • Rapid prototyping(RP) is a novel technology to create 3D products directly from CAD system. This study proposes a new RP method which uses the PZT ceramic plate to make a Drop-On-Demand liquid jet from the nozzle. The characteristic of drop formation in the new system is investigated both numerically and experimentally. The optimal drop for 3-D Printing can be obtained by the proper amplitude and frequency of the applied voltage. Also the process of the drop formation is analyzed using the pressure wave theory and verified by numerical simulation. First, the pressure wave generated by the deformation of the Piezo-plate at the nozzle is analyzed by solving the 2D axisymmetric wave equation via Finite Element Method. Finally, the drop formation process is simulated using a commercial software, FLOW 3D considering the pressure at the nozzle obtained by solving the wave equation as the boundary condition.