Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.11.3805

Molecular Dynamics Simulation of a Small Drop of Liquid Argon  

Lee, Song Hi (Department of Chemistry, Kyungsung University)
Publication Information
Abstract
Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.
Keywords
Drop of liquid argon; Irving-Kirkwood pressure; Surface tension; Molecular dynamics simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Hill, T. L. J. Phys. Chem. 1952, 56, 526.   DOI
2 Kond, S. J. Chem. Phys. 1956, 25, 662.   DOI
3 Schofield, D.; Henderson, J. R. Proc. R. Soc. London 1982, Ser. A 379, 231.   DOI
4 Baus, M.; Lovett, R. Phys. Rev. Lett. 1990, 65, 1781.   DOI   ScienceOn
5 Lee, S. H. Bull. Kor. Chem. Soc. 2012, 33, 3039.   DOI   ScienceOn
6 Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637.   DOI
7 Ono, S.; Kondo, S. In Encyclopedia of Physics; Flugge, S., Ed.; Springer: Berlin, 1960; Vol. 10, Sec. 37, p 134.
8 Buff, P. F. J. Chem. Phys. 1955, 23, 419.   DOI
9 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 64.
10 Hoover, W. G. Phys. Rev. A 1985, 31, 1695.   DOI
11 Nose, S. Mol. Phys. 1984, 52, 255.   DOI   ScienceOn
12 Thompson, S. M.; Gubbins, K. E.; Walton, J. P. R. B.; Chantry, R. A. R.; Rowlinson, J. S. J. Chem. Phys. 1984, 81, 530.   DOI
13 Tsai, D. H. J. Chem. Phys. 1978, 70, 1375.
14 Chapela, G. A.; Saville, G.; Thompson, S. M.; Rowlinson, J. S. J. Chem. Soc. Faraday Trans. II 1977, 8, 133.
15 NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/fluid (accessed 2011).
16 Lee, S. H. Bull. Kor. Chem. Soc. 2012, 33, 167.   DOI   ScienceOn
17 Gibbs, G. W. Collected Works; Yale Univ. Press: New Haven, 1948, Vol. 1.
18 Rowlinson, J. S.; Widom, B. Theory of Capillarity; Oxford: Clarendon: 1982.
19 Tolman, R. C. J. Chem. Phys. 1949, 17, 333.   DOI
20 Koenig, F. O. J. Chem. Phys. 1950, 18, 449.   DOI
21 Buff, F. P. J. Chem. Phys. 1951, 19, 1591.   DOI