• Title/Summary/Keyword: Drop performance test

Search Result 298, Processing Time 0.033 seconds

An experimental investigation of thermodynamic performance of R-22 alternative blends (R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구)

  • Hwang, E.P.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

Diagnosis on performance of turbine flowmeter using differential pressure in the meter (차압을 이용한 터빈유량계 성능 진단)

  • Ha, Young-cheol;Her, Jae-young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.153-159
    • /
    • 2004
  • We have investigated the feasibility of using differential pressure(pressure drop) of gas turbine meter to diagnose turbine performance degradation caused by mechanical wearing damage and/or dirt buildup or erosion. If the differential pressure between the upstream piping and the throat of a turine meter can be correlated to meter flow rate over the operating range of the meter, then a relatively simple differential pressure measurement in the filed might be used to detect meter performance changes. To test this method, we have conducted two experimental simulation on Straightener Integrated Type(SIT) turbine meter. One is fur dirt buildup on turbine blade, the other is for eccentricity of the blade. Results show that this method provide a reliable measure of performance degradation and is useful maintenance indicator.

  • PDF

Performance Characteristics of Propane/isobutane Mixtures in a Small Refrigeration System (프로판-이소부탄 혼합냉매를 적용한 소형 냉동시스템의 성능 특성에 관한 연구)

  • 윤원재;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.73-82
    • /
    • 2002
  • A small refrigeration system used in a water purifier was tested by employing propane/isobutane (R-290/R-6OOa) mixtures as an alternative refrigerant of R-12. The drop-in tests were performed by varying mass fraction of propane at 0.25, 0.5 and 0.75 with a change of both refrigerant charge amount and capillary tube length in order to find an optimum composition in aspect of performance and reliability of the system. As a result, the mixture of 50% propane-50% isobutane showed the best performance and reliability among them in a small refrigeration system. During steady state operations, both the COP and refrigeration capacity increased by 4% and 9%, respectively, as compared to the baseline R-12 system. In addition, the propane/isobutane (50/50) mixture system yielded advantages in the minimization of modification and redesigning of system components due to very similar saturation tempera- ture and pressure characteristics with R-12.

Performance Evaluation in Fin-Tube Heat Exchanger by Tow-In Winglet Pairs (Tow in 와류발생기에 의한 핀-관 열교환기의 성능실험)

  • ;Kahoru Torii
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • To reduce the air side pressure drop in air-cooled heat exchanger, tow-in type winglet vortex generators are applied. A specially designed multiple-channel test core was used in the experiments for the various geometry of winglet vortex generators. The proposed tow-in type vortex generator gives significant separation delay, reduces form drag, and removes the zone of poor heat transfer from near-wake of the tubes. The results show the significant pressure drop reduction for the tow-in win91e1 vortex generators with the similar enhancement of the heat transfer as other vortex generator applications in heat exchanger. In the range of Reynolds number of 350 to 2100 the pressure drop decrease 8∼15% and 34∼55% for the in-line and staggered tube banks, respectively, compared to those without vortex generators.

Analysis on Biomechanical Differences in Lower Limbs Caused by Increasing Heart Rates During Drop-landing (드롭랜딩 시 심박수 증가에 따른 하지의 생체역학적 차이 분석)

  • Hong, Wan-Ki;Kim, Do-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Objective : This study aimed to understand how increased heart rates at the time of drop landing during a step test would affect biomechanical variables of the lower extremity limbs. Background : Ballet performers do more than 200 landings in a daily training. This training raises the heart rate and the fatigability of the lower extremity limbs. Ballet performance high heart rate can trigger lower extremity limb injury. Method : We instructed eight female ballet dancers with no instability in their ankle joints(mean ${\pm}$ SD: age, $20.7{\pm}0.7yr$; body mass index, $19.5{\pm}1.2kg/m^2$, career duration, $8.7{\pm}2.0yr$) to perform the drop landing under the following conditions: rest, 60% heart rate reserve (HRR) and 80% HRR. Results : First, the study confirmed that the increased heart rates of the female ballet dancers did not affect the working ranges of the knee joints during drop landing but only increased angular speeds, which was considered a negative shock-absorption strategy. Second, 80% HRR, which was increased through the step tests, led to severe fatigue among the female ballet dancers, which made them unable to perform a lower extremity limb-neutral position. Hence, their drop landing was unstable, with increased introversion and extroversion moments. Third, we observed that the increasing 80% HRR failed to help the dancers effectively control ground reaction forces but improved the muscular activities of the rectus femoris and vastus medialis oblique muscles. Fourth, the increasing heart rates were positively related to the muscular activities of the vastus medialis oblique and rectus femoris muscles, and the extroversion and introversion moments. Conclusion/Application : Our results prove that increased HRR during a step test negatively affects the biomechanical variables of the lower extremity limbs at the time of drop landing.

Numerical Analysis and Demonstration Test on the Performance of a Static Mixer for mixing Biogas and Town Gas for the 5MW Biogas Turbine (5MW 바이오가스 터빈의 바이오가스와 도시가스 혼합용 정적 혼합기의 성능에 관한 수치해석 및 실증 연구)

  • Cha, Hyoseok;Song, Soonho;Park, Jong Yeon;Kim, Young Il;Mun, Sung Young
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • The purpose of this study is to verify the performance of a static mixer for mixing of biogas and town gas by numerical analysis and demonstration test. The reason for designing a static mixer is that there is a need to mix town gas with biogas when there is less production of biogas in biogas sites. Non-uniformity in the outlet section was calculated for investigating the performance of a static mixer. Non-uniformity was based on the mole fraction of methane in a mixture of biogas and town gas. Low non-uniformity means that biogas and town gas are mixed well through this static mixer. Also, pressure drop at the outlet section of a static mixer was calculated. The pressure drop is less than 0.2% in this static mixer. This static mixer is suitable for applying to a 5MW bio-gas turbine through the demonstration test in the field.

Study on the Performance Improvement of the Aftermarket Automotive Muffler (비순정품 자동차 머플러의 성능개선)

  • Lee, Sung-Won;Choi, Doo-Seuk;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2602-2608
    • /
    • 2009
  • Aftermarket muffler has been developed mainly by personal experience and trial-and error and has not been properly simulated or evaluated its performance. One of the aftermarket muffler problems is that the aftermarket muffler has quite high pressure-drop across the passage. To reduce the pressure-drop, various simulation and test has been performed for various muffler models. As a result, the muffler that has superior pressure-drop and vibration characteristics compared to the previous muffler has been developed. Developed aftermarket muffler has a structure that avoids confined space causing vibration due to exhaust pressure pulsation and bisects an inlet pipe from the engine.

Effects of Sensor Errors in Air Cleaner Testing on the Cleaner Performance Estimation (공기청정기 시험기의 센서신호 오차가 공기청정기 성능 평가에 미치는 영향)

  • CHUNHWAN LEE;MINYOUNG KIM;SUMIN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.77-82
    • /
    • 2023
  • The fuel cell in fuel cell electric vehicle utilizes oxygen in the atmosphere, which requires the use of an air cleaner system to minimize the intake of harmful pollutants. To estimate the performance of the air cleaner system, the pressure drop between the filter inlet and outlet is used under the rated air flow condition. In this study, the effect of sensor error in this air cleaner testing is experimentally carried out. It is found that the errors of the temperature sensor does not significantly affect the estimation of pressure drop. However, in the case of the pressure sensor, 5% sensor error results in the error of pressure drop estimation by 3%. Therefore, it is recommended that the measurement accuracy of the pressure sensor mounted in test system should be maintained at less than 5%.