• 제목/요약/키워드: Drop on Demand Printing

검색결과 39건 처리시간 0.025초

초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템 (Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning)

  • 노형래;고정국;권계시
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.873-877
    • /
    • 2013
  • 잉크젯 기술은 가정용 프린터에서부터 제조 도구로 확대 되었다. 최근 인쇄전자 분야에서 고해상도 인쇄가 요구되고 있다. 기존의 잉크젯 인쇄 패터닝 방식을 향상 시키기 위해 전기수력학잉크젯 기술이 최근 주목을 받고 있는데 노즐 직경보다 작은 방울을 토출할 수 있고 넓은 점도 범위와 재료를 사용할 수 있기 때문이다. 본 논문에서는 미세 패터닝을 위한 EHD 프린팅 시스템이다. 요구 적출형 프린팅에 의해 다양한 패턴을 인쇄하고 벡터와 레스터 프린팅 알고리즘을 개발하였다. 내경이 $8{\mu}m$ 인 노즐을 이용하여 $7{\mu}m$ 이하의 미세 전도성 선폭을 EHD 방식을 통해 만들 수 있다.

Development of MEMS based Piezoelectric Inkjet Print Head and Its Applications

  • Shin, Seung-Joo;Lee, Hwa-Sun;Lee, Tae-Kyung;Kim, Sung-Jin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.20.2-20.2
    • /
    • 2010
  • Recently inkjet printing technology has been developed in the areas of low cost fabrication in environmentally friendly manufacturing processes. Although inkjet printing requires the interdisciplinary researches including development of materials, manufacturing processes and printing equipment and peripherals, manufacturing a printhead is still core of inkjet technology. In this study, a piezoelectric driven DOD (drop on demand) inkjet printhead has been fabricated on three layers of the silicon wafer in MEMS Technology because of its chemical resistance to industrial inks, strong mechanical properties and dimensional accuracy to meet the drop volume uniformity in printed electronics and display industries. The flow passage, filter and nozzles are precisely etched on the layers of the silicon wafers and assembled through silicon fusion bonding without additional adhesives. The piezoelectric is screen-printed on the top the pressure chamber and the nozzle plate surface is treated with non-wetting coating for jetting fluids. Printheads with nozzle number of 16 to 256 have been developed to get the drop volume range from 5 pL to 80 pL in various industrial applications. Currently our printheads are successfully utilized to fabricating color-filters and PI alignment layers in LCD Flat Panel Display and legend marking for PCB in Samsung Electronics.

  • PDF

산업용 잉크젯 플로터의 압전세라믹 헤드에 의한 드롭제어 (Drop Control by Piezoelectric Ceramic Head of Industrial Inkjet Plotter)

  • 최근수;윤신용;백수현;김용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.787-790
    • /
    • 2006
  • This paper analyzes the principle and feature of the piezoelectric ceramic print head for the image printing of industrial inkjet plotter, and apply the Drop-on-Demand method that can adjust an ink drop size in accordance with the certain time adjustment. In order to do this study, drive frequency is selected at maximum 8.3[kHz] which can be operated within resonance frequency range of the piezoelectric ceramic. Drop controlling was realized according to pulse waveform the drive voltage, and grey-scale and satellite diminution method were applied for printing of high resolution image. A feasibility study of the result will be demonstrated by constructing the experiment equipment.

  • PDF

잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석 (Experimental Analysis of Droplet Formation Process for Inkjet Printhead)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.

요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합 (Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head)

  • 김명기;황준영;이상호;강경태;강희석
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.116-125
    • /
    • 2008
  • Inkjet printing technology with a drop-on-demand (DOD) inkget head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

액적의 분사 거동을 지배하는 무차원수에 대한 수치해석적 연구 (NUMERICAL STUDY OF THE EFFECTS OF THE GOVERNING NON-DIMENSIONAL PARAMETERS ON THE DROPLET EJECTION BEHAVIOR)

  • 김은정;백제현
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.65-70
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically in terms of the non-dimensional parameters. The numerical simulation is performed using a volume-of-fluid model. It is important to eject droplet within the printability range, where the droplet is ejected in stable manner without satellite droplets. Generally, the printability range has been determined by Z number, which is the inverse of Oh number. However, it is found that the ejection of droplets with same Z number can exhibit different behavior depending on the value of Ca and We number. Therefore, it is insufficient to determine the printability range only with Z number. Instead, other non-dimensional parameters, such as Ca and We number, should be considered comprehensively.

요구 적출형 잉크젯 프린트 헤드에서의 압력파 위상 정합 (Phase Matching of Pressure Wave in a Drop-On-Demand Inkjet Print Head)

  • 김명기;황준영;이상호;강경태;박문수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1444-1449
    • /
    • 2007
  • Inkjet printing technology with a drop-on-demand (DOD) inkjet head technology has been recognized as one of versatile and low cost manufacturing tools in the electronics industry. Concerned with control of driving signal, however, general strategy to optimize jetting stability has not been understood well, because of the inherent complex multi-physics nature in inkjet phenomena. Motivated by this, present study investigates the effect of driving waveforms of piezoelectric head on jetting characteristics of DOD inkjet system focused on jetting stability with phase matching of pressure waves in the print head. The results show that velocities and volumes of the ink jetted droplets were linear relations with the driving signal's maximum voltage, while periodic behaviors are observed with the driving signal's pulse widths.

  • PDF

잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구 (A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.