• Title/Summary/Keyword: Drop coating

Search Result 77, Processing Time 0.033 seconds

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

Fabrication of Electroconductive Textiles Based PLA Nanofiber Web Coated with PEDOT:PSS (PEDOT:PSS로 코팅된 PLA 나노섬유 웹의 전기전도성 텍스타일 제조)

  • Shin, Sungeun;Cha, Sujin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 2020
  • We proposed a simple process of fabricating electroconductive textiles by coating conductive polymer PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) on biocompatible PLA (Poly Lactic Acid) nanofiber web for application to smart healthcare. Electroconductive textiles were obtained by a drop-coating process using different amounts of PEDOT:PSS solutions., DMSO (dimethyl sulfoxide) was then used as an additive in the post-treatment process to improve conductivity. The surface morphology of the specimens was observed by FE-SEM. The chemical structures of the specimens were characterized using FTIR. The electrical properties (linear and sheet resistance) of the specimens were measured. The effect of the bending angles on the electrical properties was also investigated to confirm their applicability as wearable smart textiles. FE-SEM and FTIR analysis confirmed that the deposition of PEDOT:PSS on the PLA nanofiber web surface was successful. The conductivity of the PEDOT:PSS/PLA nanofiber web was enhanced up to 1.5 ml with an increasing amount of PEDOT:PSS solutions, but there was no significant difference at 2.0 ml. The optimum condition of PEDOT:PSS deposition was established to 1.5 ml. Even when the specimen coated with 1.5 ml was bent every 30°, the change in the electrical resistance values was still low within 3.7 Ω. It confirmed that stable electrical performance was maintained and proved the applicability as a flexible textile sensor.

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Development of Membrane Filter with Nanostructured Porous Layer by Coating Metal Nanoparticles onto a Micor-Filter (마이크로-필터 상에 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.591-595
    • /
    • 2007
  • The membrane filter coated with nanostructured porous surface layer was made by heat treatment after depositing nanoparticles onto a conventional micron-fibrous metal filter as a substrate filter. The nanostructured porous layer membrane filter (NSPL-MF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by coating the nanoparticle agglomerates of dendrite structure onto the micron-fibrous metal filter. Pressure drop of nanostructured porous layer membrane filter decreased with increasing the heat treatment temperature to make the nanostructured porous layer adhered on the filter surface because the nanoparticle agglomerates shrank, but filtration efficiency did not decrease clearly.

Performance Assessment of Sputter-Coating-Colored BIPV Modules Through Field Test (현장 실험을 통한 Sputter Coating 컬러 BIPV 모듈의 발전성능 평가)

  • Lee, Hyo-Mun;Yoon, Jong-Ho;Kim, Hyun-Il;Lee, Gun-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.1-12
    • /
    • 2020
  • To assess the performance and characteristics of colored building-integrated photovoltaic (BIPV) modules, a comparative assessment of empirical performance was conducted on colored BIPV modules (gray, blue, and orange) and general BIPV module. These modules were installed on the south-facing slope (30°) for comparative assessment through a field test. Monitoring data were collected every 10 min from December 20, 2019 to January 21, 2020 and used to performance and characteristics analysis. Performance ratio and module efficiency were utilized during performance indexing for comparative assessment. For general BIPV modules, the operational efficiency was analyzed at 16.63%, whereas for colored BIPV modules, 13.70% (gray), 15.12 % (blue), and 14.49% (orange) were analyzed. It was discovered that the efficiency reduction caused by transmission losses owing to the application of colored cover glasses were 17.74% (gray), 9.05% (blue), and 9.86 % (orange), under field testing conditions. These values turned on an additional 7% reduction in efficiency for gray BIPV modules, compared to the degradation resulting from transmission drop (gray: 10.87%, blue: 8.99%, and orange: 9.02%) calculated using the efficiency of each module in standard test conditions (STC). Performance ratio analysis resulted in the following values: 0.92 for general BIPV modules, and 0.85 (gray), 0.91 (blue), and 0.91 (orange) for colored BIPV modules. As demonstrated by the above results, modules with a colored cover glass may differ in their operational performance depending on their color, unlike general modules. Therefore, in addition to the performance evaluation under STC, additional factors of degradation require consideration through field test.

Tribological Properties of Chemical Vapor Deposited Graphene Coating Layer (화학기상증착법에 의하여 제조된 그래핀 성장층의 기계적 마모 특성)

  • Lee, Jong Hoon;Kim, Sun Hye;Cho, Doo Ho;Kim, Se Chang;Baek, Seung Guk;Lee, Jong Gu;Kang, Junmo;Choi, Jae-Boong;Seok, Chang Sung;Kim, Moon Ki;Koo, Ja Choon;Lim, Byeong Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.206-211
    • /
    • 2012
  • Graphene has recently received high attention as a promising material for various applications, and many related studies have been undertaken to reveal its basic mechanical properties. However, the tribological properties of graphene film fabricated by the chemical vapor deposition (CVD) method are barely known. In this study, the contact angle and frictional wear characteristics of graphene coated copper film were investigated under room temperature, normal air pressure, and no lubrication condition. The contact angle was measured by sessile drop method and the wear test was carried out under normal loads of 660 mN and 2940 mN, respectively. The tribological behaviors of a graphene coating layer were also examined. Compared to heat treated bare copper foil, the graphene coated one shows a higher contact angle and lower friction coefficient.

Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing (PTFE membrane이 코팅된 여과백의 off-line 탈진시 미세먼지 집진 특성)

  • Kim, Joung-Hun;Moon, Il-Shik;Hwang, Min-Young;Kim, Ryang-Gyoon;Ko, Daekwun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.391-402
    • /
    • 2017
  • Particulate matter becomes an important issue in the environmental society recently so that it is necessary to evaluate that the commercial application of baghouse systems for effective control of fine particulates is viable. A laboratory-scale baghouse experimental apparatus with filter bags made of PTFE felt or PTFE felt coated with PTFE membrane is used to investigate the filtration performances of fine particulates. Experiments by changing filtration velocity, inlet dust concentration, and average dust particle size show that the dust collection efficiency becomes higher at lower filtration velocity, higher inlet dust concentration and larger average dust particle size. The total pressure drop through the filter media and dust layer becomes higher at higher filtration velocity and higher inlet dust concentration. The dust collection efficiency is higher and the pressure drop is lower at a baghouse with filter bags coated with PTFE membrane than that without membrane coating. From the result that the dust collection efficiency of $PM_{2.5}$ in a reasonable filtration velocity range during off-line pulsing at a baghouse with PTFE felt bag filters coated with PTFE membrane is as high as 99.99%, it is confirmed that the use of baghouse is an effective measure to control the fine particulates.

Fluttering Characteristics of Free-falling Plates (자유낙하하는 판의 fluttering 특성 연구)

  • Hong, Seulki;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • Abstract In the present study, the characteristics of kinematics and dynamics in the fluttering motion of free-falling plates are investigated at Reynolds number of $10^5$. We record quasi-two-dimensional trajectories of free-falling plates with and without superhydrophobic coating using high-speed camera, and compute the drag and lift forces by trajectory analysis. Translational and angular velocities are modeled as harmonic functions with specific phase differences. In particular, periodic mass elevations near turning points are explained using the suggested models. At each turning point, a sudden drop in lift and a rapid increase in drag occur simultaneously due to fast increase in angle of attack. However, the lift is increased over the buoyancy-corrected weight of plate during gliding flight, resulting in periodic mass elevations near turning points. Superhydrophobicity is shown to increase lift but to reduce drag on a fluttering plate, resulting in the decrease of mean descent speed.

Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong-Geun;Park, Seok-Joo;Park, Young-Ok;Ryu, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient