• Title/Summary/Keyword: Drop Spreading

Search Result 29, Processing Time 0.034 seconds

NUMERICAL ANALYSIS OF THE IMPACTING AND SPREADING DYNAMICS OF THE ELLIPSOIDAL DROP ON THE PERFECT NON-WETTING SOLID SURFACE (완전 비습윤 고체 표면 위 타원형 액적의 충돌 및 퍼짐 거동에 대한 수치적 연구)

  • Yun, S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.90-95
    • /
    • 2016
  • Leidenfrost drops with ellipsoidal shaping can control the bouncing height by adjusting the aspect ratio(AR) of the shape at the moment of impact. In this work, we focus on the effect of the AR and the impact Weber number(We) on the non-axisymmetrical spreading dynamics of the drop, which plays an important role in the control of bouncing. To understand the impact dynamics, the numerical simulation is conducted for the ellipsoidal drop impact upon the perfect non-wetting solid surface by using volume of fluid method, which shows the characteristics of the spreading behavior in each principal axis. As the AR increases, the drop has a high degree of the alignment into one principal axis, which leads to the consequent suppression of bouncing height with shape oscillation. As the We increases, the maximum spreading diameters in the principal axes both increase whereas the contact time on the solid surface rarely depends on the impact velocity at the same AR. The comprehensive understanding of the ellipsoidal drop impact upon non-wetting surface will provide the way to control of drop deposition in applications, such as surface cleaning and spray cooling.

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR CAPILLARY SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 모세퍼짐 현상에 관한 직접수치해석 기법개발)

  • Hwang, Wook-Ryol;Jeong, Hyun-Jun;Kim, See-Jo;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.14-19
    • /
    • 2007
  • We present a direct numerical simulation technique and some preliminary results of the capillary spreading of a droplet containing particles on the solid substrate. We used the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension and employed the discontinuous Galerkin method for the stabilization of the interface advection equation. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles. We investigated the droplet spreading by the capillary force and discussed effects of the presence of particles on the spreading behavior. It has been observed that a particulate drop spreads less than the pure liquid drop. The amount of spread of a particulate drop has been found smaller than that of the liquid with effectively the same viscosity as the particulate drop.

Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate (고온으로 가열된 고체 표면과 충돌하는 타원형 액적의 퍼짐 거동)

  • Yun, Sungchan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

A study of drop spreading between moving solid plates (움직이는 고체판 사이에서 액적의 퍼짐에 관한 연구)

  • Kwon, Hyuk-Min;Kim, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2967-2970
    • /
    • 2007
  • In a usual painting process, a liquid drop spreads on canvas by being dragged along a paintbrush. To obtain the fundamental understanding of the painting process from the mechanical point of view, we experimentally investigate various dynamic behavior of a liquid drop that spreads between moving solid plates. It is shown that three distinct types of drop spreading take place, i.e. shearing, spreading, and intact dragging, depending on the liquid viscosity and surface tension, the plate speed, and the wettability. We suggest a regime map based on the capillary number and the receding contact angle, which indicates the boundaries between different types of spreading behavior in a dimensionless space.

  • PDF

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets (초고속 미세 액적 충돌을 이용한 나노미터 크기 입자상 오염물질의 세정에 대한 CFD 시뮬레이션)

  • Jinhyo, Park;Jeonggeon, Kim;Seungwook, Lee;Donggeun, Lee
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.129-136
    • /
    • 2022
  • The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.

A Numerical Analysis of a Drop Impact on the Liquid Surface (액적의 액막 충돌에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2568-2573
    • /
    • 2008
  • A drop impact on the liquid film/pool generates several phenomena such as the drop floating, bouncing, formation of vortex ring, jetting, bubble entrapment and splashing. These phenomena depend on the impact velocity, the drop size, the drop properties and the liquid film/pool thickness. These parameters can be summarized by four main dimensionless parameters; Weber number, Ohnesorge number, Froude number and non-dimensional film/pool thickness. In the present study, the phenomena of the splashing and bubble entrapment due to the drop impact on the liquid film/pool were numerically investigated by using a Level Set method for the sharp interface tracking of two distinct phases. After the drop impact, the splashing phenomena with the crown formation and spreading were predicted. Under the specific conditions, the bubble entrapment at the base of the collapsing cavity due to the drop impact was also observed. The numerical results were compared to the available experimental data showing good agreements.

  • PDF

Assessment of Maximum Spreading Models for a Newtonian Droplet Impacting on a Solid Surface (고체 표면에 충돌하는 뉴턴 액적에 대한 최대 액막 직경 모델 검토)

  • An, Sang-Mo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.633-638
    • /
    • 2012
  • The maximum spreading is the maximum extent to which a drop can spread after impacting on a surface. It is one of the crucial factors determining the spraying performance in many applications. In this study, the existing maximum spreading models for a Newtonian liquid droplet impacting on a dry solid surface were reviewed and compared with the experimental results over the ranges of $4{\leq}Re{\leq}11700$, $23{\leq}We{\leq}786$, and $37.9^{\circ}{\leq}{\theta}_s{\leq}107.1^{\circ}$. The surface wettability was found to have only a minor influence on the maximum spreading, compared to the liquid viscosity and impact velocity. Among the models tested, the Roisman (2009) model showed the best agreement with the experimental results, matching 80% of the measured data within ${\pm}5%$.

Examination of Spread-Recoil Behavior of a Shear-thinning Liquid Drop on a Dry Wall (전단희석 액적의 건조 벽면 충돌 후 전개-수축 거동의 관찰)

  • An, Sang-Mo;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.131-138
    • /
    • 2009
  • In the present study, spread-recoil behavior of a drop of shear-thinning liquid (xanthan solution) on a dry wall (polished stainless-steel plate) was examined and compared with that of Newtonian liquid (glycerin solution). Nine different kinds of xanthan and glycerin solutions were tested, including three pairs of xanthan and glycerin solutions, each having the same viscosity in low shear rate region ($10^{-2}-10^0\;l/s$). The drop behavior was visualized and recorded using a CCD camera. The maximum diameter and the spreading velocity of the xanthan drops turned out to be significantly larger and the time to reach their final shape was much shorter compared to the cases with the glycerin solutions, due to the smaller viscous dissipation resulted from lower viscosity in the higher shear rate region (>$10^0\;l/s$). As a result, the maximum diameters were measured to be larger than the predicted values based on the model proposed for Newtonian liquids, and the deviation was more pronounced with the solution with the larger viscosity variation. Consequently, viscosity variation with the shear rate was found to be a dominant factor governing the spread-recoil behavior of shear-thinning drops.

  • PDF

Change of Surface Morphology with the Spreading Rate of Organic Solution During Interfacial Polymerization for Polyamide-based Thin Film Composite Membrane Manufacturing Process (폴리아마이드계 박막복합막 제조 공정에서 계면중합의 유기용액 퍼짐 속도에 따른 표면 모폴로지의 변화)

  • Park, Chul Ho
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • The interfacial polymerization method has been applied to various fields as a reaction in which reactive monomers dissolved in two immiscible solutions cause polymerization at the interface. In the case of water treatment membranes, m-phenylene diamine and trimesoyl chloride are used as reactants. The performance of the membrane is affected by various polymerization factors. In this study, we investigated how the spreading rate of the organic solution influences the surface and structure of the membrane. Spreading rate of organic solutions was adjusted to 7.6 and 25 mm/sec. The solution volume of the organic phase was adjusted to 1~3 drops. The observed results showed that cracks were not found in the polyamide membrane when dropping at a drop of 7.6 mm/sec and dropping two drops at 25 mm/sec. On the other hand, cracks occurred in all cases. Therefore, the spreading rate of the initial organic solvent is expected to greatly affect the performance of the polyamide membrane.

Development of a Crop Drop Detection System for Heated Rolling Process of Steel Mill (열간압연 공정을 위한 철편(鐵片)검출 시스템 개발)

  • Kim, Jong-Chul;Kwon, Tai-Gil;Han, Min-Hong
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.248-257
    • /
    • 2003
  • In a heated rolling process of a steel mill where steel plates are pressed to a sheet coil by spreading and expanding, an irregularly-shaped head portion as well as a tail portion of the sheet coil need to be cropped. Any crop which is not clearly cut and separated from the sheet coil may cause critical damages to the facilities of the following processes. As the cropping process is performed very fast, human eyes are not proper for continuous monitoring of the cropping process. To solve this problem, we have developed a machine-vision based crop-drop detection system. The system also measures lengths of major and minor axes for the crops and thereby determines the proper crop size to minimize steel sheet losses.