Browse > Article
http://dx.doi.org/10.11629/jpaar.2022.18.4.129

CFD simulation of cleaning nanometer-sized particulate contaminants using high-speed injection of micron droplets  

Jinhyo, Park (School of Mechanical Engineering, Pusan National University)
Jeonggeon, Kim (School of Mechanical Engineering, Pusan National University)
Seungwook, Lee (School of Mechanical Engineering, Pusan National University)
Donggeun, Lee (School of Mechanical Engineering, Pusan National University)
Publication Information
Particle and aerosol research / v.18, no.4, 2022 , pp. 129-136 More about this Journal
Abstract
The line width of circuits in semiconductor devices continues to decrease down to a few nanometers. Since nanoparticles attached to the patterned wafer surface may cause malfunction of the devices, it is crucial to remove the contaminant nanoparticles. Physical cleaning that utilizes momentum of liquid for detaching solid nanoparticles has recently been tested in place of the conventional chemical method. Dropwise impaction has been employed to increase the removal efficiency with expectation of more efficient momentum exchange. To date, most of relevant studies have been focused on drop spreading behavior on a horizontal surface in terms of maximum spreading diameters and average spreading velocity of drop. More important is the local liquid velocity at the position of nanoparticle, very near the surface, rather than the vertical average value. In addition, there are very scarce existing studies dealing with microdroplet impaction that may be desirable for minimizing pattern demage of the wafer. In this study, we investigated the local velocity distribution in spreading liquid film under various impaction conditions through the CFD simulation. Combining the numerical results with the particle removal model, we estimated an effective cleaning diameter (ECD), which is a measure of the particle removal capacity of a single drop, and presented the predicted ECD data as a function of droplet's velocity and diameter particularly when the droplets are microns in diameter.
Keywords
Dropwise impaction; Spreading velocity; Effective cleaning diameter; Wafer cleaning;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. (1975). Effect of contact deformations on the adhesion of particles, Journal of Colloid and interface science, 53(2), 314-326.   DOI
2 Erkan, N., and Okamoto, K. (2014). Full-field spreading velocity measurement inside droplets impinging on a dry solid surface, Experiments in fluids, 55(11), 1-9.
3 Haller, K. K., Ventikos, Y., Poulikakos, D., and Monkewitz, P. (2002). Computational study of high-speed liquid droplet impact, Journal of applied physics, 92(5), 2821-2828.   DOI
4 Henry, C., and Minier, J. P. (2014). Progress in particle resuspension from rough surfaces by turbulent flows, Progress in Energy and Combustion Science, 45, 1-53.   DOI
5 Hinds, W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Ed., New York, John Wiley & Sons, Inc.
6 Hong, S., Kim, J., Won, J., Qureshi, N., Chae, S., Wada, Y., Hiyama, H., Hamada, S., and Kim, T. (2019). A water polishing process to improve ceria abrasive removal, ECS Journal of Solid State Science and Technology, 8(8), 430.
7 Johnson, K. L., Kendall, K., and Roberts, A. (1971). Surface energy and the contact of elastic solids, Proceedings of the royal society of London. A. mathematical and physical sciences, 324(1558), 301-313.   DOI
8 Fan, F. G., Soltani, M., Ahmadi, G., and Hart, S. C. (1997). Flow-induced resuspension of rigid-link fibers from surfaces, Aerosol Science and Technology, 27(2), 97-115.   DOI
9 Frommhold, P. E., Mettin, R., and Ohl, C. D. (2015). Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates, Experiments in Fluids, 56(4), 1-17.   DOI
10 Jung, S., and Hutchings, I. M. (2012). The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale, Soft Matter, 8(9), 2686-2696.
11 Kern, W. (1990). The evolution of silicon wafer cleaning technology, Journal of the Electrochemical Society, 137(6), 1887.
12 Kondo, T., and Ando, K. (2019). Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning, Physics of Fluids, 31(1), 013303.
13 Okorn-Schmidt, H. F., Holsteyns, F., Lippert, A., Mui, D., Kawaguchi, M., Lechner, C., Frommhold, P. E., Nowak. T., Reuter. F., Pique. M. B., Cairos. C., and Mettin, R. (2013). Particle cleaning technologies to meet advanced semiconductor device process requirements, ECS Journal of Solid State Science and Technology, 3(1), N3069.
14 Pasandideh Fard, M., Qiao, Y. M., Chandra, S., and ? Mostaghimi, J. (1996). Capillary effects during droplet impact on a solid surface, Physics of fluids, 8(3), 650-659.   DOI
15 Regulagadda, K., Bakshi, S., and Das, S. K. (2017). Morphology of drop impact on a super-hydrophobic surface with macro-structures, Physics of fluids, 29(8), 082104.
16 Tan, H. (2017). Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces, Computers & Fluids, 154, 142-166.   DOI
17 Thoroddsen, S. T., Thoraval, M. J., Takehara, K., and Etoh, T. G. (2011). Droplet splashing by a slingshot mechanism, Physical review letters, 106(3), 034501.
18 van Dam, D. B., and Le Clerc, C. (2004). Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Physics of Fluids, 16(9), 3403-3414.   DOI
19 Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D., and Sun, C. (2015). Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns, Soft matter, 11(9), 1708-1722.   DOI
20 Wang, X. D., Lee, D. J., Peng, X. F., and Lai, J. Y. (2007). Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Langmuir, 23(15), 8042-8047.   DOI
21 Yonemoto, Y., and Kunugi, T. (2017). Analytical consideration of liquid droplet impingement on solid surfaces, Scientific reports, 7(1), 1-11.   DOI
22 Zoeteweij, M. L., Van der Donck, J. C. J., and Versluis, R. (2009). Particle removal in linear shear flow: model prediction and experimental validation, Journal of adhesion science and technology, 23(6), 899-911.   DOI
23 Cho, Y., Choi, H., Mo, S., and Kim, T. (2020). Removal of nano-sized surface particles by CO2 gas cluster collisions for dry cleaning, Microelectronic Engineering, 234, 111438.
24 Burdick, G. M., Berman, N. S., and Beaudoin, S. P. (2005). Hydrodynamic particle removal from surfaces, Thin Solid Films, 488(1-2), 116-123.   DOI
25 Chequer, L., Carageorgos, T., Naby, M., Hussaini, M., Lee, W., and Bedrikovetsky, P. (2021). Colloidal detachment from solid surfaces: Phase diagrams to determine the detachment regime, Chemical Engineering Science, 229, 116146.