• Title/Summary/Keyword: Drone Technology

Search Result 518, Processing Time 0.02 seconds

PUF-based Secure FANET Routing Protocol for Multi-Drone

  • Park, Yoon-Gil;Lee, Soo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.9
    • /
    • pp.81-90
    • /
    • 2020
  • In order to operate multi drone efficiently, existing control methods must be improved, and drones must be able to construct communication networks autonomously. FANET(Flying Ad-Hoc Network), which is being considered as an alternative to solving these problems, is based on ad hoc network technology and can be exposed to a variety of security vulnerabilities. However, due to the limited computational power and memory of FANET nodes, and rapid and frequent changes in network topology, it is not easy to apply the existing security measures to FANET without modification. Thus, this paper proposes lightweight security measures applicable to FANET, which have distinct characteristics from existing ad hoc networks by utilizing PUF technology. The proposed security measures utilize unique values generated by non-replicable PUFs to increase the safety of AODV, FANET's reactive routing protocol, and are resistant to various attacks.

Developing Stereo-vision based Drone for 3D Model Reconstruction of Collapsed Structures in Disaster Sites (재난지역의 붕괴지형 3차원 형상 모델링을 위한 스테레오 비전 카메라 기반 드론 개발)

  • Kim, Changyoon;Lee, Woosik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2016
  • Understanding of current features of collapsed buildings, terrain, and other infrastructures is a critical issue for disaster site managers. On the other hand, a comprehensive site investigation of current location of survivors buried under the remains of a building is a difficult task for disaster managers due to the difficulties in acquiring the various information on the disaster sites. To overcome these circumstances, such as large disaster sites and limited capability of rescue workers, this study makes use of a drone (unmanned aerial vehicle) to effectively obtain current image data from large disaster areas. The framework of 3D model reconstruction of disaster sites using aerial imagery acquired by drones was also presented. The proposed methodology is expected to assist fire fighters and workers on disaster sites in making a rapid and accurate identification of the survivors under collapsed buildings.

Database Design for Growth Prediction of Forest using Drone Photo (드론 항공사진을 이용한 산림의 성장예측을 위한 DB 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.709-714
    • /
    • 2020
  • Forest resources are the most important element that can affect the nature environment directly in modern society. Due to the fast industrialization of our country and marginal states like China, many people suffer torments from severe environmental pollution like yellow and fine dusts everyday recently. So the interests concerned about the significance of nature and environment become major issue nowadays. Precious forest resources, however, are not properly managed and destroyed vainly due to frequent mountain fires, damages by floods, and unplanned land development in real world. Therefore, efficient forest management is required to solve these problems effectively. In this research, we design and implement the forest information database that can predict the growth of forest resources and enables us to manage forest resources efficiently, make decision for logging, build the waterway to prevent flooding, and construct a future tree-planting project easily using forest aerial photograph taken by a drone in order to deploy and manage the forest resources scientifically and systematically.

Implementation of Facility Movement Recognition Accuracy Analysis and Utilization Service using Drone Image (드론 영상 활용 시설물 이동 인식 정확도 분석 및 활용 서비스 구현)

  • Kim, Gwang-Seok;Oh, Ah-Ra;Choi, Yun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.88-96
    • /
    • 2021
  • Advanced Internet of Things (IoT) technology is being used in various ways for the safety of the energy industry. At the center of safety measures, drones play various roles on behalf of humans. Drones are playing a role in reaching places that are difficult to reach due to large-scale facilities and space restrictions that are difficult for humans to inspect. In this study, the accuracy and completeness of movement of dangerous facilities were tested using drone images, and it was confirmed that the movement recognition accuracy was 100%, the average data analysis accuracy was 95.8699%, and the average completeness was 100%. Based on the experimental results, a future-oriented facility risk analysis system combined with ICT technology was implemented and presented. Additional experiments with diversified conditions are required in the future, and ICT convergence analysis system implementation is required.

Database Design for Management of Forest Resources using a Drone (드론을 이용한 산림자원 정보관리를 위한 DB 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • With the fast development of modern society, the interests concerned about the significance of nature and environment become major issue nowadays. Especially, threats for our health due to severe environmental pollution and fine dusts become serious problem with the fast industrialization of our society, and extra attention is focused on interests about conservation of nature and management of forest resources. Precious forest resources, however, are not properly managed and destroyed vainly due to frequent fire, damage by storms and floods, and unplanned land development. So systematic and scientific construction and management of forest resources are required in order to solve these problems efficiently. Furthermore, implementation of the forest resource information database that contains information of trees, Topography, ecosystem of the forest is urgently needed. In this paper, we design and implement the forest resource information database based on the information of location based forest resources and Topography using forest images taken by a drone, that enables us to manage forest resources efficiently, make decision for logging, and construct a future tree-planting project easily.

A Study on the Technique of Construction Site Management based on UAV and USN (UAV와 USN 기반의 건설현장관리기법 연구)

  • Yeon, Sang-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.457-467
    • /
    • 2019
  • In recent years, various methods have been attempted to visually manage the construction site efficiently, and in particular, there has been a tendency to use a UAV or a drone in the air rather than a land on a construction site, Can be visually photographed and recorded or analyzed. In this study, the unmanned aerial photographs were taken at least three times and the USN sensors were simultaneously operated on the main structure at the time of shooting, The goal of this research was to make the image information and environmental information of the construction site available for efficient construction management by matching. As a result, not only professional engineers at construction sites but also administrative managers can visually confirm the detailed situation of the site at the time of the construction site and the completion status, and can help decision making in appropriate budget input and appropriate resource support The experts in each field discussed the safety management of the construction site, the prevention of disaster and various factors of change which can be changed by natural environment factors.

A Study on the Production of Perspective Images using Drone (드론을 이용한 다시점 투영 이미지 제작 연구)

  • Choi, Ki-chang;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.953-958
    • /
    • 2022
  • Holographic Stereogram can provide the depth perception without the visual fatigue and dizziness because it use multiple images acquired from the multiple viewpoints. In order to produce a holographic stereogram, it is necessary to obtain perspective images of a live object and record it on film using a digital hologram printer. when acquiring perspective images, the hologram without distortion can be produced only when the perspective images with a constant distance between the camera and the target is obtained. If the target is small, it is possible to keep the constant distance from the camera to object. but if it is large, this is difficult to keep the constant distance. In this study, we photograph the large object using the POI (Point of Interest) function which is one of the smart flight modes of drone to produce perspective images required for the hologram production. after that, problems such as the unexpected shakings and distance change between camera and object is corrected in post production. as a result, we produce the perspective images.

Autonomous Flight of a Drone that Adapts to Altitude Changes (고도 변화에 적응하는 드론의 자율 비행)

  • Jang-Won Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.448-453
    • /
    • 2023
  • As the production of small quadcopter drones has diversified and multi-sensors have been installed in FC due to the spread of MCU capable of high-speed processing, small drones that can perform special-purpose operations rather than simple operations have been realized. Hovering, attitude control, and position movement control were possible through the IMU in the FC mounted on the drone, but control is not easy when GPS connection and video communication are not possible in a closed building with a complex structure. In this study, when encountering an obstacle with a change in altitude in such a space, we proposed a method to overcome the obstacle and perform autonomous flight using optical flow and IR sensors using the Lucas-Kanade method. Through experiments, the drone's altitude flight on stairs that replace the complex structure of a closed space with stable hovering motion has a success rate of 98% within the tolerance of 10 [cm] due to external influences, and reliable autonomous flight up and down is achieved.

Collision-free local planner for unknown subterranean navigation

  • Jung, Sunggoo;Lee, Hanseob;Shim, David Hyunchul;Agha-mohammadi, Ali-akbar
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.580-593
    • /
    • 2021
  • When operating in confined spaces or near obstacles, collision-free path planning is an essential requirement for autonomous exploration in unknown environments. This study presents an autonomous exploration technique using a carefully designed collision-free local planner. Using LiDAR range measurements, a local end-point selection method is designed, and the path is generated from the current position to the selected end-point. The generated path showed the consistent collision-free path in real-time by adopting the Euclidean signed distance field-based grid-search method. The results consistently demonstrated the safety and reliability of the proposed path-planning method. Real-world experiments are conducted in three different mines, demonstrating successful autonomous exploration flights in environment with various structural conditions. The results showed the high capability of the proposed flight autonomy framework for lightweight aerial robot systems. In addition, our drone performed an autonomous mission in the tunnel circuit competition (Phase 1) of the DARPA Subterranean Challenge.

Application of GNSS Multipath Map by Correction Projection to Position Domain in Urban Canyon (도심지 GNSS 다중경로 오차 지도 적용을 위한 다중경로 보정정보 위치 영역 투영 기법)

  • Yongjun Lee;Heonho Choi;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.155-158
    • /
    • 2024
  • Multipath, a major error source in urban GNSS positioning (global navigation satellite system), pose a challenge due to its site-dependent nature, varying with the user's signal reception environment. In our previous study, we introduced a technique generating GNSS multipath map in urban canyon. However, due to uncertainty in initial GNSS positions, applying multipath maps required generating multiple candidate positions. In this study, we present an efficient method for applying multipath maps by projecting the multipath correction in position domain. This approach effectively applies multipath maps, addressing the challenges posed by urban user position uncertainties.