• Title/Summary/Keyword: Drone Taxi

Search Result 6, Processing Time 0.019 seconds

A Discussion on the Legal Definition and Legislation Methods of Drone Taxis (드론 택시의 법적 정의 및 법제화 방안 논의)

  • Choi, Ja-Seong;Baek, Jeong-seon;Hwang, Ho-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.491-499
    • /
    • 2020
  • There are policies that foster the drone industry, which either put a legal precedent on drones through the "Drone Act" or grant a delay or exemption in applying the safety measures of "the Aviation Safety Act". Yet, the definition of a drone is unclear, requiring further discussion on commercial usage. Therefore, we have studied cases domestically and abroad, and also analyzed issues with the current aviation legislation. It was found that a drone is defined as "an unmanned aircraft where a pilot is not on board, and its net weight is 150 kg or less". However, there are several issues, such as that a drone taxi requires a pilot on board, and its weight is 150 kg or more. Thus, we propose to define a drone as "an unmanned aerial vehicle (provided, that its own net weight should be 300 kg or under, or not be limited to weight) under Article 2 (3) of the "Aviation Security Act" as prescribed by Ordinance of the Ministry of Land, Infrastructure, and Transport, which operates either by remote, automatically, or autonomously; or an unmanned aircraft under Article 2 (6) of the "Aviation Security Act".

A Study on the Development Status and Economic Impacts of Drone Taxis (드론택시의 개발현황 및 경제적 파급효과 분석)

  • Choi, Ja-Seong;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.132-140
    • /
    • 2020
  • The development status was studied to predict the concept of how drone taxis would be presented in daily life. the results of the analysis on traffic effects of drone taxis showed that they would be an innovative transportation option that could reach a distance of 60km, which would typically take an hour by car, within twenty minutes. Moreover, the economic analysis of existing aircraft development was limited to production (development investment) of the input budget. However, since the drone taxi is a new transportation system, an overall traffic platform, such as its own terminals, would need to be established. So, the production inducement effect was analyzed by dividing input budget into three factors; production, infrastructure, and service. The results indicate this to be an innovative project expected to have an economic ripple effect and reach a total of 24 trillion won after an investment of 13 trillion won (production + infrastructure + service) in Korea from 2020 to 2040.

A Study on Vertiport Installation Standard of Drone Taxis(UAM) (드론택시(UAM)의 수직이착륙장(Vertiport) 설치기준 연구)

  • Choi, Ja-Seong;Lee, Seok-Hyun;Baek, Jeong-Seon;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • UAM(Urban Air Mobility) systems have evolved in the form of helicopters in the 1960~1970s, tiltrotors in the 1980s, small aircraft transportation systems in the 2000s, and electric-powered Vertical Take-Off and Landing (eVTOL) in the 2010s; accordingly, the early heliport has evolved to its current form of a Vertiport. Vertical Takeoff and Landing Sites, Vertiports, are important factors for the successful introduction of UAM, along with the resolution of air traffic control (ATC), air security, and noise problems. However, there are no domestic or international installation standards and guidelines yet. Therefore, in this study, installation standards were prepared by referring to domestic and international case studies, ICAO standards, and MIT research papers. The study proposes to establish standards for Final Approach and Takeoff Area (FATO) as 1.5D, 1D for Touchdown and Lift-Off Area (TLOF), and 1.5D for Safety Area (SA). It also proposes to add "UAM Vertiport Installation Standards" to the 「Act on the Promotion and Foundation of Drone Utilization, Drone Act」.

Study on the Means of Legislating the Range of Ownership of Air Space Above Land for Drone Taxi (UAM) (드론택시(UAM)의 토지상공 소유권 범위 법제화 방안 연구)

  • Choi, Ja-Seong;Sung, Yeon-Young;Shim, Yun-Seob;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • It is anticipated that there will be radical disputes over land ownership in the event of the advent of the era of UAM. As such, policy alternative is presented by analyzing and researching relevant laws at home and abroad on the means of legislating 'Regulations on compensation for use of air space above land' in preparation of such occurrence. As the results of the study, it is deemed to limit the range of the land ownership in accordance with UAM operation as follows. First, it is proposed to newly enact regulation to limit the ownership of air space of land owner to the public space above the elevation of 200m as stipulated under the Article 78 of the Aviation Safety Act. Second, as the result of analysis made for the option of making compensation from the perspective of the property right of land ownership and option of not making compensation from the perspectives of public interest and concerns in the event of operation of UAM within the air space below the elevation of 200m, it is deemed that legislative decision is necessary through more extensive studies in the future.

A Study of UWB Placement Optimization Based on Genetic Algorithm

  • Jung, Doyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.

A Study on the Design Criteria of UAM Vertiport Complying New FAA and EASA Regulations and Its Domestic Applications (FAA와 EASA의 새 규정에 따른 UAM Vertiport 설계 기준 및 국내 적용 연구)

  • Byeong-Seon Ahn;Sung-chang Choi;Ho-Yon Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.380-392
    • /
    • 2022
  • In this paper, the new vertiport regulations of the FAA and EASA are analyzed for urban air mobility(UAM), and the major components of the vertipad and the new specifications of each component are analyzed, and UAM operation in various environments is analyzed. Additional components for vertiport and regulations for surrounding airspace were also reviewed. Afterwards, based on the size of the S-A1 aircraft being developed by Hyundai Motors, domestic vertiport specifications and layouts were investigated for UAM operation, and these were applied to the city of Incheon. In addition, the time required for using a taxi or car were compared with the time required for using UAM between major locations in Incheon and Seoul.