• Title/Summary/Keyword: Drone Search

Search Result 52, Processing Time 0.035 seconds

Analysis of Importance of Search Altitude Control for Rapid Target Detection of Drones

  • Ha, Il-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • Rapidity and accuracy are important considerations when a drone is employed in a wide surveillance area to detect a target. They are more important when the scope of application is a search and rescue operation or the monitoring of natural disasters, which may require prompt warnings and response. During the actual operation of a drone, rapidity and accuracy are associated with the change in the altitude of the drone. The aim of this study is to analyze the characteristics of drones at varying altitudes and prove that altitude is a relevant factor in the performance of drones. Herein, the characteristics of the drone at varying altitudes were analyzed through several search simulations. The results suggest that a high-altitude drone is relatively advantageous compared to a low-altitude drone in a probability-based target search, and that the search altitude is also a very important and fundamental factor in target search by drones.

Analysis of Drone Target Search Performance According to Environment Change

  • Lim, Jong-Bin;Ha, Il-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1178-1186
    • /
    • 2019
  • In recent years, interest in drones has grown, and many countries are developing them into a strategic industry of the future. Drones are not only used in industries such as logistics and agriculture but also in various public sectors such as life rescue, disaster investigation, traffic control, and firefighting. One of the most important tasks of a drone is to accurately identify targets in these applications. Target recognition may vary depending on the search environment of the drone. Therefore, this study tests and analyzes the drone's target recognition performance according to changes in the search environment such as the search altitude and the search angle. In addition, we propose a new algorithm that improves upon the disadvantages of the Haar cascade method, which is the existing algorithm that recognizes the target by analyzing a captured image.

Probability-Based Target Search Method by Collaboration of Drones with Different Altitudes (고도를 달리하는 드론들의 협력에 의한 확률기반 목표물 탐색 방법)

  • Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.12
    • /
    • pp.2371-2379
    • /
    • 2017
  • For the drone that is active in a wide search area, the time to grasp the target in the field of applications such as searching for emergency patients, monitoring of natural disasters requiring prompt warning and response, that is, the speediness of target detection is very important. In the actual operation of drone, the time for target detection is highly related to collaboration between drones and search algorithm to efficiently search the navigation area. In this research, we will provide a search method with cooperation of drone based on target existence probability to solve the problem of quickness in drone target search. In particular, the proposed method increases the probability of finding a target and shorten the search time by transmitting high-altitude drone search results to a low-altitude drone after searching first and performing more precise search. We verify the performance of the proposed method through several simulations.

Simulation Study on Search Strategies for the Reconnaissance Drone (정찰 드론의 탐색 경로에 대한 시뮬레이션 연구)

  • Choi, Min Woo;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.23-39
    • /
    • 2019
  • The use of drone-bots is demanded in times regarding the reduction of military force, the spread of the life-oriented thought, and the use of innovative technology in the defense through the fourth industrial revolution. Especially, the drone's surveillance and reconnaissance are expected to play a big role in the future battlefield. However, there are not many cases in which the concept of operation is studied scientifically. In this study, We propose search algorithms for reconnaissance drone through simulation analysis. In the simulation, the drone and target move linearly in continuous space, and the target is moving adopting the Random-walk concept to reflect the uncertainty of the battlefield. The research investigates the effectiveness of existing search methods such as Parallel and Spiral Search. We analyze the probabilistic analysis for detector radius and the speed on the detection probability. In particular, the new detection algorithms those can be used when an enemy moves toward a specific goal, PS (Probability Search) and HS (Hamiltonian Search), are introduced. The results of this study will have applicability on planning the path for the reconnaissance operations using drone-bots.

A study on the establishment and utilization of large-scale local spatial information using search drones (수색 드론을 활용한 대규모 지역 공간정보 구축 및 활용방안에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • Drones, one of the 4th industrial technologies that are expanding from military use to industrial use, are being actively used in the search missions of the National Police Agency and finding missing persons, thereby reducing interest in a wide area and the input of large-scale search personnel. However, legal review of police drone operation is continuously required, and the importance of advanced system for related operations and analysis of captured images in connection with search techniques is increasing at the same time. In this study, in order to facilitate recording, preservation, and monitoring in the concept of precise search and monitoring, it is possible to achieve high efficiency and secure golden time when precise search is performed by constructing spatial information based on photo rather than image data-based search. Therefore, we intend to propose a spatial information construction technique that reduces the resulting data volume by adjusting the unnecessary spatial information completion rate according to the size of the subject. Through this, the scope of use of drone search missions for large-scale areas is advanced and it is intended to be used as basic data for building a drone operation manual for police searches.

Research on appropriate search altitude for drone-based air pollution search (드론기반 대기오염 탐색을 위한 적정 탐색고도 연구)

  • Ha, Il-Kyu;Kim, Ki-Hyun;Kim, Jin-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.294-305
    • /
    • 2022
  • Recently, drones have been widely used to solve environmental problems such as environmental protection and natural disaster monitoring. This study focuses on the problem of the search altitude of drones when using drones to search for air pollution in order to maintain the urban air environment. In particular, when exploring air pollution in cities using drones, various experiments are conducted to determine the appropriate search altitude for each air pollution source and each communication module. Through the experiment, the maximum measurable altitude for the most common air pollutants, such as CO (carbon monoxide), NO2 (nitrogen dioxide), O3 (ozone), and P10, P2.5 (fine dust), was identified, and the effective search altitude for each air pollution source was determined. As a result of the experiment, three types of drone search altitudes including legally measurable altitudes were suggested. The communication module measurable altitude was 60m to 120m depending on the communication module, and the effective measurable altitude was analyzed from 10m to 100m.

3 Dimensional Augmented Reality Flight for Drones

  • Park, JunMan;Kang, KiBeom;Jwa, JeongWoo;Won, JoongHie
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2018
  • Drones are controlled by the remote pilot from the ground stations using the radio control or autonomously following the pre-programmed flight plans. In this paper, we develop a method and an optimal path search system for providing 3D augmented reality flight (ARF) images for safe and efficient flight control of drones. The developed system consisted of the drone, the ground station and user terminals, and the optimal path search server. We use the Dijkstra algorithm to find the optimal path considering the drone information, flight information, environmental information, and flight mission. We generate a 3D augmented reality flight (ARF) image overlaid with the path information as well as the drone information and the flight information on the flight image received from the drone. The ARF image for adjusting the drone is generated by overlaying route information, drone information, flight information, and the like on the image captured by the drone.

A Legislative Proposal to Prevent the Infringement of Privacy and to Solve Operational Problems by Drones (드론에 의한 프라이버시 침해 방지 및 운용 상 문제 해결을 위한 입법 제안)

  • Kim, Yongho;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1141-1147
    • /
    • 2017
  • An unmanned aerial vehicle(UAV), commonly known as a drone, is an aircraft without a human pilot aboard, which is operated by wireless device. A drone provides the capability for the aerial search and traffic control as a police equipment. It has benefits for the missions for the aerial photography with the high resolution camera which can replace eye-dependent search processes. Moreover it has advantage of retrieving several times for the recorded videos. However, if the law enforcement agency misuse and overuse a drone for investigations and search missions without certain regulations and principles, it breaches privacy and personal information infringement. In this paper, we issue a lawful challenges on drone operations and discuss solutions to those challenges.

Maritime Search And Rescue Drone Using Artificial Intelligence (인공지능을 이용한 해양구조 드론)

  • Shin, Gi-hwan;Kim, Jin-hong;Park, Han-gyu;Kang, Sun-kyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.688-689
    • /
    • 2022
  • This paper proposes the development of an AI drone equipped with motion detection and thermal imaging camera to quickly rescue people from drowning accidents. Currently, when a drowning accident occurs, a large number of manpower must be put in to find the person who needs it, such as conducting a search operation. The time required for this process is too long, and especially the night search is more difficult for a person to do directly. To solve this situation, we are going to use AI drones.

  • PDF

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.