• Title/Summary/Keyword: Drone Communication

Search Result 213, Processing Time 0.022 seconds

A study on the creation of mission performance data using search drone images (수색용 드론 이미지를 활용한 임무수행 데이터 생성에 관한 연구)

  • Lee, Sang-Beom;Lim, Jin-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • Along with the development of the fourth industry, the public sector has increasingly paid more attention to search using drones and real-time monitoring, for various goals. The drones are used and researched to complete a variety of searching and monitoring missions, including search for missing persons, security, coastal patrol and monitoring, speed enforcement, highway and urban traffic monitoring, fire and wildfire monitoring, monitoring of illegal fishing in reservoirs and protest rally monitoring. Police stations, fire departments and military authorities, however, concentrate on the hardware part, so there are little research on efficient communication systems for the real-time monitoring of data collected from high-performance resolution and infrared thermal imagining cameras, and analysis programs suitable for special missions. In order to increase the efficiency of drones with the searching mission, this paper, therefore, attempts to propose an image analysis technique to increase the precision of search by producing image data suitable for searching missions, based on images obtained from drones and provide the foundation for improving relevant policies and establishing proper platforms, based on actual field cases and experiments.

Replay Attack based Neutralization Method for DJI UAV Detection/Identification Systems (DJI UAV 탐지·식별 시스템 대상 재전송 공격 기반 무력화 방식)

  • Seungoh Seo;Yonggu Lee;Sehoon Lee;Seongyeol Oh;Junyoung Son
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.133-143
    • /
    • 2023
  • As drones (also known as UAV) become popular with advanced information and communication technology (ICT), they have been utilized for various fields (agriculture, architecture, and so on). However, malicious attackers with advanced drones may pose a threat to critical national infrastructures. Thus, anti-drone systems have been developed to respond to drone threats. In particular, remote identification data (R-ID)-based UAV detection and identification systems that detect and identify illegal drones with R-ID broadcasted by drones have been developed, and are widely employed worldwide. However, this R-ID-based UAV detection/identification system is vulnerable to security due to wireless broadcast characteristics. In this paper, we analyze the security vulnerabilities of DJI Aeroscope, a representative example of the R-ID-based UAV detection and identification system, and propose a replay-attack-based neutralization method using the analyzed vulnerabilities. To validate the proposed method, it is implemented as a software program, and verified against four types of attacks in real test environments. The results demonstrate that the proposed neutralization method is an effective neutralization method for R-ID-based UAV detection and identification systems.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

An Evaluation of Inference Acceleration for Drone-based Real-time Object Detection (드론 기반 실시간 객체 식별을 위한 추론 가속화 평가)

  • Kwon, Seung-Sang;Moon, Yong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.408-410
    • /
    • 2022
  • 최근 데이터 획득 위치에 가장 근접하고, 저 수준의 계산력을 제공하는 엣지 기기를 중심으로 직접 딥러닝 추론을 수행하고자 하는 요구가 증가하고 있다. 본 논문에서는 드론에서 촬영한 교통 영상 데이터를 기반으로, 다수의 차량 종류 및 보행자를 식별하는 모델을 Jetson Nano 에 탑재하여 기본 성능을 측정한다. 더불어, 자원제약형 기기 환경에서 TensorRT 와 Deepstream 을 활용하여 객체 식별 모델의 연산 경량화 및 추론 가속화 성능을 극대화하기 위한 구현 및 실험을 수행하여 Anchor-based 및 Anchor-free 객체 식별 모델의 정확도와 실시간 대응력을 평가하고 논의한다.

A Study for drone and robot to monitor, sterilize and clean the air/water/soil pollution of smart livestock (스마트 축사의 공기/수질/토양 오염을 감시, 살균 및 청소할 드론과 로봇에 관한 연구)

  • Kim, Do-Yeup;Jung, Chan-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.737-739
    • /
    • 2022
  • 본 논문은 스마트 축사의 공기/수질/토양 오염을 감시, 살균 및 청소할 드론과 로봇에 관한 연구이다. 서론에서는 서귀포시에서 최근에 개발되어 보급을 시작한 스마트 축사 시스템의 시범서비스와 바른전자의 사례를 통해서 시스템의 발전 방향과 문제점들을 분석한다. 본론에서는 차세대 스마트 축사의 전체 구성도와 서비스 구성표를 작성함으로써 연구개발의 방향을 모색하고, 인공지능, 빅데이터 분석, 드론, 로봇의 협동 방식의 스마트 축사를 구상하여 현존하는 스마트 축사 시스템의 문제점들을 보완하였다. 결론적으로, 본 논문은 차세대 스마트 축사의 환경오염과 자연생태계위협을 근원적으로 해결할 입체적인 감지정보처리 및 실시간으로 오염/전염병의 예방과 선제적 대응을 포함한, 축사에서 발생할 오염 및 전염병 사고/사건을 관할 당국에 신고하고 행정명령을 처리하는 ICT기반시설을 제안한다.

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang;Soojeon Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.758-767
    • /
    • 2023
  • In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.

Advanced Machine Learning Approaches for High-Precision Yield Prediction Using Multi-temporal Spectral Data in Smart Farming

  • Sungwook Yoon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.335-344
    • /
    • 2024
  • This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.

Design and Performance Analysis of Common data link digital modem for surveillance UAVs (정찰용 무인기를 위한 공용데이터링크 모뎀 설계 및 성능 분석)

  • Jung, Sungjin;Kim, Younggil;Lee, Daehong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.162-168
    • /
    • 2018
  • The UAV(Unmanned Aerial Vehicle) system, including the drone of a variety of fields, which has become an issue and utilized in various fields, has begun to develop in military fields and is actively developed in the commercial field. In various types of UAV systems, which have been developed recently, the communication system that is responsible for the connection between the ground control unit and the UAVs is called the data link. Especially, common data link used in military UAVs is required stability of communication to transmit surveillance and reconnaissance intelligence information and UAV's status. In this paper, the requirement for a modem was defined to secure the communication stability of the common data link used in surveillance UAVs. And, the design of the data link modem to satisfy applicable specifications was proposed. The proposed modem design was verified through the performance measurement of the implemented systems.

Experimental Analysis to Derive Optimal Wavelength in Underwater Optical Communication Environment (수중 광통신 환경에서 최적 파장을 도출하기 위한 실험적 해석)

  • Dong-Hyun Kwak;Seung-il Jeon;Jung-rak Choi;Min-Seok Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.478-488
    • /
    • 2023
  • This paper investigates the naval application of laser communication as a potential replacement for traditional acoustic wave communication in underwater environments. We developed a laser transceiver using Arduino and MATLAB, conducting a water tank experiment to validate communication feasibility across diverse underwater conditions. In the first experiment, when transmitting data through a laser, the desired message was converted into data and transmitted, received, and confirmed to be converted into the correct message. In the second experiment, the operation of communication in underwater situations was confirmed, and in the third experiment, the intensity of light was measured using the CDS illuminance sensor module and the limits of laser communication were measured and confirmed in various underwater situations. Additionally, MATLAB code was employed to gather data on salinity, water temperature, and water depth for calculating turbidity. Optimal wavelength values (532nm, 633nm, 785nm, 1064nm) corresponding to calculated turbidity levels (5, 20, 55, 180) were determined and presented. The study then focuses on analyzing potential applications in naval tactical communication, remote sensing, and underwater drone control. Finally, we propose measures for overcoming current technological limitations and enhancing performance.