• Title/Summary/Keyword: Driving wind

Search Result 148, Processing Time 0.027 seconds

A review of wind-turbine structural stability, failure and alleviation

  • Rehman, Shafiqur;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.511-524
    • /
    • 2020
  • Advancements in materialistic life styles and increasing awareness about adverse climatic changes and its negative effects on human life have been the driving force of finding new and clean sources of energy. Wind power has become technologically mature and commercially acceptable on global scale. However, fossil fuels have been the major sources of energy in most countries, renewable energy (particularly wind) is now booming worldwide. To cope with this wind energy technology, various related aspects have to be understood by the scientific, engineering, utility, and contracting communities. This study is an effort towards the understanding of the (i) wind turbine blade and tower structural stability issues, (ii) turbine blade and tower failures and remedial measures, (iii) weather and seismic effects on turbine blade and tower failures, (iv) gear box failures, and (v) turbine blade and tower failure analysis tools.

A Study on Development of Wind Power 400W Generation System with Vertical axis Type (400W 수직형 풍력발전시스템의 개발에 관한 연구)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

Influence of Reynolds Number and Scale on Performance Evaluation of Lift-type Vertical Axis Wind Turbine by Scale-model Wind Tunnel Tests

  • Tanino, Tadakazu;Nakao, Shinichiro;Miyaguni, Takeshi;Takahashi, Kazunobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.229-234
    • /
    • 2011
  • For Lift-type Vertical Axis Wind Turbine (VAWT), it is difficult to evaluate the performance through the scale-model wind tunnel tests, because of the scale effect relating to Reynolds number. However, it is beneficial to figure out the critical value of Reynolds number or minimum size of the Lift-type VAWT, when designing this type of micro wind turbine. Therefore, in this study, the performance of several scale-models of Lift-type VAWT (Reynolds number : $1.5{\times}10^4$ to $4.6{\times}10^4$) was investigated. As a result, the Reynolds number effect depends on the blade chord rather than the inlet velocity. In addition, there was a transition point of the Reynolds number to change the dominant driving force from Drag to Lift.

Wind tunnel model studies to predict the action of wind on the projected 558 m Jakarta Tower

  • Isyumov, N.;Case, P.C.;Ho, T.C.E.;Soegiarso, R.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.299-314
    • /
    • 2001
  • A study of wind effects was carried out at the Boundary Layer Wind Tunnel Laboratory (BLWTL) for the projected 558-m high free-standing telecommunication and observation tower for Jakarta, Indonesia. The objectives were to assist the designers with various aspects of wind action, including the overall structural loads and responses of the Tower shaft and the antenna superstructure, the local wind pressures on components of the exterior envelope, and winds in pedestrian areas. The designers of the Tower are the East China Architectural Design Institute (ECADI) and PT Menara Jakarta, Indonesia. Unfortunately, the project is halted due to the financial uncertainties in Indonesia. At the time of the stoppage, pile driving had been completed and slip forming of the concrete shaft of the Tower had begun. When completed, the Tower will exceed the height of the CN-Tower in Toronto, Canada by some 5 m.

Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation (방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

An Experimental Study on the Ventilation Characteristics of a Wind-Turbine Natural Ventilator According to the Outdoor-Wind Velocity and the Indoor/Outdoor-Temperature Difference (윈드터빈 자연환기 장치의 외기풍속 및 온도차에 따른 환기특성에 관한 실험연구)

  • Han, Dong-Hun;Kim, Yeong-Sik;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • With the improvement of living standards, the ventilation for the mitigation of indoor or outdoor air-pollution problems has recently attracted a lot of attention. Consequently, the ventilation for the supply of outdoor fresh air into a room is treated as an important building-design factor. The ventilation is generally divided into the forced and natural types; here, the former can control the ventilation rate by using mechanical devices, but it has the disadvantages of the equipment costs, maintenance costs, and noise generation, while the latter is applied to most workshops due to the absence of noise and the low installation and maintenance costs. In this experimental study, the ventilation performance of a typical rotating-type natural ventilator, which is called a "wind turbine," was investigated with the outdoor-wind velocity and the indoor/outdoor-temperature difference. From the experiment results, it was confirmed that the temperature difference of $10^{\circ}C$ corresponds to the ventilation driving force with an outdoor-wind velocity of 1.0 m/s. Additionally, the intake-opening area of a building also exerts a great effect on the ventilation rates.

Effect of the Wind on the Pollutant Transport in Masan Bay (마산만의 오염물질 수송에 미치는 바람 효과)

  • Kim, Jong-Hwa;Lee, Mun-Ok;Gang, Ju-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.4
    • /
    • pp.385-397
    • /
    • 1992
  • Current measurements at 3 sections and numerical experiments were carried out in Masan Bay to understand the effect of the wind on the residual currents and pollutant transport. The vertical distribution of horizontal velocities were directly affected by the wind at the depths of 1m and 2m beneath the sea surface. Analysis of the velocity data suggested that changes in the vertical gravitational circulation contributed to the net circulation. The net transport of water through the northern part of the bay was observed to be landward, with wind-induced transport of about 100m super(3)/s. Hence, wind is concluded to be the dominant mechanism driving the net circulation in the northern area of Masan Bay. Numerical experiments are shown that when S wind with 5m/s blew, northern area of the bay was generated the horizontal circulation of clockwise and local gyre. On the contrary of those, N wind made her to the anti-clockwise. In the case of no wind, the tidal residual current(constant flow) is very small or neglected except the bay-mouth. The inflow or outflow pattern of the mouth is considered as the flows generated by tidal residual current only. The distance of wind-induced transport of pollutant was as long as 2 times of no wind during the one tidal period.

  • PDF

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 중규모 기상장과 취송류에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.23-29
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the current. In this paper, three-dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flaw over the coastal regions. The surface temperature of the inland area was determined through a surface heat budget consideration with the inclusion of a layer of vegetation.A series of numerical experiments were then carried out to investigate the diurnal response of the air flaw and wind-generated circulation to various types of surface inhomogeneities.

A Study on Driving Characteristics of Power Compensation Discontinuity Energy Occurrence System (탄성에너지를 이용한 전력보상 불연속에너지발생시스템의 운전특성에 관한 연구)

  • Park, Se-Jun;Lim, Jung-Yeol;Yoon, Suk-Am;Gang, Byeong-Bog;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.622-626
    • /
    • 2002
  • Combined generation system of photovoltaic and wind power is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually, because the energy source is changeable and stable through change of weather as irradiation, temperature, wind speed, wind speed, wind direction, seasons, etc..

  • PDF

A Study on Driving Characteristics of combined Generation System 3kW Proto Type Photovoltaic/Wind Generation With Power Storage Apparatus (동력저장기능을 가지는 3kW proto type 태양광/풍력 복합발전시스템의 운전특성에 관한 연구)

  • Park, Se-Jun;Kang, Byung-Bog;Yoon, Jeong-Phil;Lim, Jung-Yeol;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.300-303
    • /
    • 2002
  • Combined generation system of Photovoltaic and wind generation have shortcoming that is different output power according to change of weather. So, the combined generation system is required backup system that such as a storage battery to supply energy, when not enough photovoltaic and wind power source for power supply equally and continually because the energy source is changeable and stable through change of weather as irradiation. temperature, wind speed. wind direction. seasons, etc.

  • PDF