• Title/Summary/Keyword: Driving bogie frame

Search Result 10, Processing Time 0.031 seconds

A Comparision on Structure Analysis and Load Test of Driving Bogie for Electrical Multiple Unit (전동차 구동대차의 구조해석 및 하중시험 비교 고찰)

  • Kim W.K.;Yoon S.C;Kwon S.T.;Park O.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.404-409
    • /
    • 2005
  • This paper describes the result of structure analysis and load test for bogie frame. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis and static load test. The analysis and test results have been very safety and stable for design load conditions.

  • PDF

Experimental Study on the Bogie Frame of Tilting Railway Vehicle for Assessment of Structural Safety (한국형 틸팅열차용 주행장치 프레임의 구조적 안전성 평가에 관한 시험적 연구)

  • Kim, Jung-Seok;Kim, Nam-Po;Seo, Sung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.166-173
    • /
    • 2006
  • This paper investigated strength of a bogie frame for Korean tilting train that is being developed in KRRI. In this study, static load tests based on Japanese Industrial Standard (JIS) were performed. In order to simulate vertical and lateral components generated by tilting link mechanism, four hydraulic actuators were used. The eight load cases such as vertical, lateral, traction, braking and driving gear loads were applied for evaluation of the strength of bogie frame. The stresses measured at the stress concentration points were assessed using Goodman diagram. From the experimental results, structural safety of the bogie frame could be ensured.

Design of bogie frames for Maglev (자기부상열차용 대차 프레임의 설계)

  • 이재익;김국진
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.845-850
    • /
    • 2002
  • Maglev is the vehicle which can run in levitated condition by the electro-magnets, and the vehicle can run without any contact condition. The vehicle is devided in two parts such as carbody and bogies, and the bogies are the driving device of the vehicle. There are many equipments in the bogie, and the frame endure many loads occurred in the operation of the vehicle. The bogie frame is designed and manufactured in the view of good safety and maintainability, and the engineers work to accomplish this purpose.

  • PDF

Reinforcement for Fatigue Fracture of Welded Bogie Frames (용접형 대차 프레임의 피로강도 보강에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.145-151
    • /
    • 2016
  • We consider the position and thickness of reinforcement with respect to fatigue fracture of welded bogie frames and propose an appropriate reinforcement method for many cases. The bogie frame is usually designed in accordance with JIS and KS, and operates under harsh load conditions: dynamic loads generated while driving, various loads during operation, and large load differences between loading and unloading. Consequently, fatigue failure often occurs throughout the bogie frame. We modelled the reinforcing method using ANSYS software and reviewed stress in the vicinity of common fatigue failure sites through computer simulation, optimizing the position and thickness of reinforcement.

Optimal design of the shape of extrusion for the bogie frame of Maglev (자기부상열차 대차프레임용 압출재 단면의 최적설계)

  • Lee Jae-ik;Kim Kuk-jin
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.440-445
    • /
    • 2003
  • Maglev is the vehicle which can run in levitated condition by the electro-magnets, and propelled by linear induction motors. The Maglev is divided in two parts such as carbody and bogies, and the bogies are the driving device of the vehicle. The frame of the bogie must endure many loads occurred in the operation of the vehicle. So the bogie frame is designed and manufactured in the view of good safety and maintainability. The methods of design of frames are developed in regards of stresses and weights of structures. In this research, the extrusion of bogie frame is re-designed by the process of topology optimization with the ANSYS. By this process, the optimal shape of extrusion is acquired and additional optimization researches would be required in the view of size and shape of the members in the extrusion.

  • PDF

System Analysis for The Train Vehicle with an Articulated Bogie Frame (관절형 대차구조를 가진 철도 차량의 시스템해석)

  • 김관주;유남식
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.522-529
    • /
    • 1998
  • In this study, system analysis for a train vehicle with an articulated bogie frame adopted in TGV and TGV-K system is performed. System analysis is carried out as follows. First, modal analysis of each subsystem is performed to obtain the natural frequencies and mode shapes. Then modal analysis, of a whole vehicle is performed to obtain the potential interaction between the subsystems. Finallyforced response analysis, such as driving point mobility, is performed to obtain the dynamic response of specific points.

  • PDF

Vibration Test Result and Consideration for AUTS(Advanced Urban Transit System (차세대전동차 진동시험 결과 및 고찰)

  • Hong, Jai-Sung;Kim, Gil-Dong;Lee, Chang-Mu;Won, Jong-Un;Lee, An-Ho;Sung, Chang-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2276-2279
    • /
    • 2011
  • The AUTS(Advanced Urban Transit System) are developed by government R&D business. This units are under main line performance test in Daebul test line. Both AC and DC could apply to the AUTS for pantagraph voltage. So main transformer and some high voltage filters are added to the under-frame. As a result the total weight of each car(Mc1-Tp1-M-T-Tp2-Mc2) is different. And axle load is different each other. The main characteristics of AUTS(Advanced Urban Transit System) are as follows. One inverter control one motor, DDM(Dircet Drive Motor), no driving gear, plug no end door, self-steering bogie etc. These matters could be appeared to strange vibration. So vibration test is important. The vibration test performed to Mc1 and Tp1. The results were checked to the up-down direction and left-right direction for acceleration.

  • PDF

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

Analysis of the acceleration of KHST prototype on the high speed test line (한국형 고속전철의 진동가속도 시험 연구)

  • Park Chankyounn;Kim Youngguk;Kim Seogwon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.567-573
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was developed to accomplish successfully this on-line test for proving the dynamic Performance of KHST. This system was consist of the personal computers based on National Instrument PXI modules and the test programs based on Labview 6i. This paper shows that this system is efficient to acquire the test data through the multi-channels connected the accelerometers which located in long distance places and flexible to change and add channels for data acquisition. The dynamic analysis of an on-line test is very complicate because the environmental conditions, as examples radius of curve, inclination of the track, tunnels, bridges, and so forth, and running conditions, as examples driving, braking, the number of working motors, and so forth, have an effect on the results. Therefor, the analysis method is important and this paper proposes the efficient procedure graphically, showing the proposed method simplify the accelerations of 5th bogie frame acquired during the on-line test for KHST.

  • PDF