• Title/Summary/Keyword: Driving and Control System

Search Result 1,648, Processing Time 0.031 seconds

Design of Deadbeat Controller for DC Motor Driving a Rotational Mechanical System (회전기계 계통을 가동시키는 직류전동기를 위한 데드비트제어기 설계)

  • 이흥재;송자윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • This paper presents a design method of deadbeat controller for DC motor driving a rotational system with gear. The deadbeat-response design developed for control system of a sampled continuous-data process does not guarantee zero intersampling ripples, but the proposed deadbeat control system that consists of the integral controller and the full-order state observer, and zero-order hold using in continuous systems, has many advantages such as an output response without the ripples and reaching the steady state without error after a given sampling period and faster settling time than the optimal control system in the same sampling period. The results of a case study through matlab simulation are shown that the efficiency of the proposed controller for DC motor driving a rotational system with gear is verified by comparing with optimal controller etc.

  • PDF

Responsibility of Control System of Engine Intake Valve with Linear Electromagnetic Actuator

  • Nakpipat, Tawatchai;Kusaka, Akihiko;Ennoji, Hisayuki;Iijima, Toshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.291-295
    • /
    • 2004
  • New valve driving system to control for the best volumetric efficiency at each load of an internal combustion engine within one engine cycle has been developed. The system needs to reduce pumping loss that cause by throttle valve during the intake valve is opened. In this system the intake valve is driven by a linear DC electromagnetic actuator which is controlled by personal computer. The result is compared both installed and uninstalled actuator into the cylinder head. By both of experimental and numerical calculation, the responsibility of the valve driving system to the engine speed was examined

  • PDF

The Stable Position Control of Hybrid type Linear Pulse Motor by Digital PI Control (디지털 PI 제어에 의한 HLPM의 안정된 위치제어)

  • Youn, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Maeng, In-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.637-645
    • /
    • 2000
  • This study was represented the improvement of the flexible position control for linear motion of hybrid type linear pulse motor(HLPM). The driving method used a minute 125 microstep drive instead of full step drive method. The digital control method was applied to the PI control for more stable position control, at this time the PI control parameters have gained by a Ziegler-Nichols turning method. The loop transfer function of control system was combined with both motor transfer function and digital PI control equation. Such, the proper for digital PI control system is verified to through the simulation and experimental result of the stability step response and bode plot with proper gain and phase margin.

  • PDF

Development of a Cooperative Heterogeneous Unmanned System for Delivery Services (물류수송을 위한 이종 협업 무인 시스템 개발)

  • Cho, Sungwook;Lee, Dasol;Jung, Yeondeuk;Lee, Unghui;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1181-1188
    • /
    • 2014
  • In this paper, we propose a novel concept foran unmanned delivery service using a cooperative heterogeneous unmanned system consisting of a self-driving car and an unmanned aerial vehicle (UAV). The proposed concept is suitable to deliver parcels in high-density and high-rise urban or residential areas. In order to achieve the proposed concept, we will develop acooperative heterogeneous unmanned system. Customers can order goods using a smartphone application and the order information, including the position of the customer and the order time, and the package is transported automatically by the unmanned systems. The system assigns the tasks suitable for each unmanned vehicle by analyzing it based on map information. Performance is validated by experiments consisting of autonomous driving and flight tests in a real environment. For more evaluation, the landing position error analysis is performed using circular error probability (CEP).

CASE STUDIES ON THE CONSTRUCTION CONTROL OF FILE FOUNDATION BY PILE DRIVING ANALYZER (항타분석기에 의한 말뚝시공관리 사례)

  • 이우진;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.79-86
    • /
    • 1994
  • Two case studies on the application of Pile Driving Analyzer (PDA) are introduced. It is shown that the PDA and CAPWAP are effective tools for the construction control of pile foundations with minimum cost and time. The PDA and CAPWAP techniques are able to evaluate the performace of hammer and driving system: to check the stresses in the pile due to driving: to determine the damage of pile: to predict the ultimate bearing capacity of pile: to estimate the important soil paramaters such as the soil resistance, quake, and damping etc.: and to provide the load - displacement curve from the simulated static load test. Theoretical backgrounds of wave mechanics is briefly reviewed and the methodology of construction control using the PDA is also discussed.

  • PDF

Design of Cruise Control System using Piece-wised Control for Electric Vehicle (구간제어기법을 이용한 전기 자동차의 정속주행용 속도제어기의 설계)

  • Lee, Yongjun;Ryoo, Youngjae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2013
  • In this paper, a design scheme of a cruise control system for an electric vehicle using piece-wised PD control is proposed. Cruise control of electric vehicles is one of the major performance elements. Drive motors having linear characteristics ideally is required in order to achieve the cruise driving. But practical motors have nonlinear characteristics and the performance of the motors can be improved by the closed-loop control to compensate it. In this paper, we improved the performance of by applying piece-wised PD control because the driving motors having nonlinear characteristics are difficult to obtain adequate performance only using closed-loop control. In order to test the proposed method, the experiments were carried out by applying the proposed method after setting up an electric vehicle equiped with a driving motors having large nonlinear characteristics. The experiment results of the proposed piece-wised PD control shows better performance than that of closed-loop control.

Development and Evaluation of Smart Secondary Controls Using iPad for People with Hemiplegic Disabilities

  • Song, Jeongheon;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.85-101
    • /
    • 2015
  • Objective: The purpose of this study was to develop and evaluate smart secondary controls using iPad for the drivers with physical disabilities in the driving simulator. Background: The physically disabled drivers face problems in the operation of secondary control devices that accept a control input from a driver for the purpose of operating the subsystems of a motor vehicle. Many of conventional secondary controls consist of small knobs or switches that physically disabled drivers have difficulties in grasping, pulling or twisting. Therefore, their use while driving might increase distraction and workload because of longer operation time. Method: We examined the operation time of conventional and smart secondary controls, such as hazard warning, turn signal, window, windshield wiper, headlights, automatic transmission and horn. The hardware of smart secondary control system was composed of iPad, wireless router, digital input/output module and relay switch. We used the STISim Drive3 software for driving test, customized Labview and Xcode programs for interface control of smart secondary system. Nine subjects were involved in the study for measuring operation time of secondary controls. Results: When the driver was in the stationary condition, the average operation time of smart secondary devices decreased 32.5% in the normal subjects (p <0.01), 47.4% in the subjects with left hemiplegic disabilities (p <0.01) and 38.8% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. When the driver was driving for the test in the simulator, the average operation time of smart secondary devices decreased 36.1% in the normal subjects (p <0.01), 41.7% in the subjects with left hemiplegic disabilities (p <0.01) and 34.1% in the subjects with right hemiplegic disabilities (p <0.01) compared with conventional secondary devices. Conclusion: The smart secondary devices using iPad for people with hemiplegic disabilities showed significant reduction of operation time compared with conventional secondary controls. Application: This study can be used to design secondary controls for adaptive vehicles and to improve the quality of life of the people with disabilities.

Analysis Model Development and Sensitivity Analysis of an Independent Driving System for Disaster Response (재난 대응용 독립 구동 시스템의 해석모델 개발 및 민감도 분석)

  • Noh, Song Yeon;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.38-45
    • /
    • 2020
  • The purpose of this study was to analyze the design sensitivity of an independent driving system for disaster response. The research procedure was as follows. First, an analysis model based on the circuit diagram of the driving system was developed. Second, to ensure the reliability of the analytical model, the load-free test results and analysis results were compared. Even if different loads acted on four independent motors, the system was confirmed to be implemented according to the design intent. Finally, the design variables of the analysis model were analyzed to obtain design variables with a significant impact on system performance and stability. The analysis program used simulation X.

Development of High Performance LonWorks Based Control Modules for Network-based Induction Motor Control

  • Kim, Jung-Gon;Hong, Won?Pyo;Yun, Byeong-Ju;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.414-420
    • /
    • 2005
  • The ShortStack Micro Server enables any product that contains a microcontroller or microprocessor to quickly and inexpensively become a networked, Internet-accessible device. The ShortStack Micro Server provides a simple way to add LonWorks networking to new or existing smart devices. . It implements the LonTalk protocol and provides the physical interface with the LonWorks communication. The ShortStack host processor can be an 8, 16, or 32-bit microprocessor or microcontrollers. The ShortStack API and driver typically require about 4kbytes of program memory on the host processor and less than 200 bytes of RAM. The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface (SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShortStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF

Intelligent Soft Driving System for an Electric Four-wheeled Vehicle Eluding Dynamic Obstacles

  • Inoue, Masaki;Yasunobu, Seiji
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.583-586
    • /
    • 2003
  • There are electric four-wheeled vehicles to assist elder people. Because of the vehicles'dynamic characteristic such as impossible to move abeam, it is difficult for these people who has little experience and has little knowledge to drive. Also to judge the future state of dynamic obstacles and to decide how to elude them safely are more difficult. We installed the predictive fuzzy controller(evaluates the future states which several kinds of operation candidates were done and chooses the best one) that modeled humans'algorithms in the system. Human predicts the future states of dynamic obstacles and chooses an operation(wait, steer, go back, etc) to elude safely. To elude dynamic obstacles flexibly, we added expert's knowledge for safe driving to this controller. In this paper, we propose the intelligent soft driving system by the controller that can elude dynamic obstacles safely, and we confirm the effectiveness by a simulation.

  • PDF