• Title/Summary/Keyword: Driving and Control System

Search Result 1,651, Processing Time 0.031 seconds

Capturing and Modeling of Driving Skills Under a Three Dimensional Virtual Reality System Based on Hybrid System

  • Kim, Jong-Hae;Hayakawa, Soichiro;Suzuki, Tatsuya;Hirana, Kazuaki;Matsui, Yoshimichi;Okuma, Shigeru;Tsuchida, Nuio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2747-2752
    • /
    • 2003
  • This paper has develops a new framework to understand the human’s driving maneuver based on the expression as HDS focusing on the driver’s stopping maneuver. The driving data has been collected by using the three-dimensional driving simulator based on CAVE, which provides three-dimensional visual information. In our modeling, the relationship between the measured information such as distance to the stop line, its first and second derivatives and the braking amount has been expressed by the PWPS model, which is a class of HDS. The key idea to solve the identification problem was to formulate the problem as the MILP with replacing the switching conditions by binary variables. From the obtained results, it is found that the driver appropriately switches the ‘control law’ according to the following scenario: At the beginning of the stopping behavior (just after finding the stopping point), the driver decelerate the vehicle based on the acceleration information, and then switch to the control law based on the distance to the stop line.

  • PDF

A Joystick Driving Control Algorithm with a Longitudinal Collision Avoidance Scheme for an Electric Vehicle

  • Won, Mooncheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1399-1410
    • /
    • 2003
  • In this paper, we develop a joystick manual driving algorithm for an electric vehicle called Cycab. Cycab is developed as a public transportation vehicle, which can be driven either by a manual joystick or an automated driving mode. The vehicle uses six motors for driving four wheels, and front/rear steerings. Cycab utilizes one industrial PC with a real time Linux kernel and four Motorola MPC555 micro controllers, and a CAN network for the communication among the five processors. The developed algorithm consists of two automatic vehicle speed control algorithms for normal and emergency situations that override the driver's joystick command and an open loop torque distribution algorithm for the traction motors. In this study, the algorithm is developed using SynDEx, which is a system level CAD software dedicated to rapid prototyping and optimizing the implementation of real-time embedded applications on distributed architectures. The experimental results verify the usefulness of the two automatic vehicle control algorithms.

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF

Position Synchronous Control of a Two-Axes Driving System by H$\infty$ Approch (H$\infty$ 제어기법을 이용한 2축 구동 시스템의 위치동기제어)

  • Byun, Jung-Hoan;Yeo, Dong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.192-198
    • /
    • 2001
  • In this study, a methodology of synchronous control which can be applied to position synchronization of a two-axes driving system has been developed. The synchronous error is caused by model uncertainties and torque disturbance of each axis. To overcome these problems, the proposed synchronous control system has been composed of two speed controllers and one synchronous controller. The speed controllers based on PID control law are aimed at the following to speed reference. And the parameters of speed controllers have been designed in order that speed response of the second axis corresponds with one of first axis. Especially, considering to model uncertainties of each axis, the synchronous controller has been designed using H$\infty$ control theory. The controller eliminates the synchronous error by controlling speed of the second axis. The effectiveness of the proposed method has been verified through simulation.

  • PDF

Development of the VR Simulation System for the Dynamic Characteristics of the Adaptive Cruise Controlled Vehicle (ACC 차량의 동특성 해석을 위한 VR 시뮬레이션 시스템 개발)

  • Kwon, Seong-Jin;Jang, Suk;Yoon, Kyoung-Han;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.163-172
    • /
    • 2004
  • Nowadays, to analyze the dynamic characteristics of the automotive driving system, the computer simulation linked up with VR(Virtual Reality) technology is treated as the useful method with the improvement of computing ability. In this paper, the VR simulation system has been developed to investigate the driving characteristics of the ASV(Advanced Safety Vehicle) equipped with an ACC(Adaptive Cruise Control) system. For the purpose, VR environment which generates 3D graphic and sound information of the vehicle, the road, the facilities, and the terrain has been organized for the driving reality. Mathematical models of vehicle dynamic analysis including the ACC model have been constructed for computer simulation. The ACC modulates the throttle and brake functions to regulate the vehicle speed so that vehicles could keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamic simulation with the graphic rendering. With the developed VR simulation system, simple scenarios are applied to analyze the dynamic characteristics. It is shown that the VR simulation system could be useful to evaluate the adaptive cruise controlled vehicle on various driving conditions.

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

Design of Control System for Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 제어시스템 설계)

  • Choi, Gi-Won;Lee, Myung-Un;Ra, Sun-Gil;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.248-257
    • /
    • 2007
  • This paper presents the control system for driving myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. A surface myoelectric sensor for measuring myoelectric signal is designed a skin interface and a processing circuit according to myoelectric signal output property. The control system consists of two controller for driving dual motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the proposed control system.

Circuit Design of Drive Control for Winch Drum (윈치드럼 구동제어 회로설계)

  • 조상훈;양승윤;박래석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-58
    • /
    • 2002
  • In this paper, we designed the circuit of drive control for towing winch. It is composed of reference voltage circuit for driving voltage reference, low pass filter circuit for noise reduction, dead zone circuit for initial transient input, and driving circuit for drum direction/velocity control. Also it is realized a drive control circuit for towing winch drum in accordance with PWM(pulse width modulation) method to suit it's purpose of a large capacity driving system. The performance of the designed circuit is analyzed by experiments and the appliablity for driving the towing winch drum satisfactorily is evaluated through a various testing.

Analysis for the stabilizer design of the large driving system (대형 구동시스템의 안정화장치 설계에 관한 연구)

  • 김광태;이양원;이봉기;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.113-117
    • /
    • 1989
  • Generally, stabilization system is surely needed for the compensation of the ship motion. In this paper, the study investigated stabilizer design for the large driving system. We make a performance analysis for the stabilization scheme through the computer simulation.

  • PDF

A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method (SPWM 구동 방식을 이용한 단상 풀 브리지 인버터의 전압 제어에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.851-858
    • /
    • 2017
  • In this study, the voltage control system of a single phase full bridge inverter was designed based on the SPWM driving method. The voltage control system consists of a single-phase full-bridge inverter, a PI controller for linearly compensating the error between the reference voltage and the output voltage, a PWM driving circuit for generating the gate signal using the SPWM method from the controller signal, and an LC filter for filtering the inverter output voltage waveform into sinusoidal waveform. Finally, the voltage control system of a single-phase full-bridge inverter based on the PWM driving method was modeled using EMTP-RV and by showing that the output voltage accurately converges the reference voltage through several simulation examples, the validity of the control system design was verified.