• Title/Summary/Keyword: Driving System

Search Result 4,633, Processing Time 0.033 seconds

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

Realization of Planar 3 D.O.F Motion Emulator (평명 3자유도 운동 에뮬레이터 구현)

  • Park, Sung-Won;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.65-73
    • /
    • 2001
  • In this paper, a mobile system using multi-wheel steering and driving mechanism is proposed to maximize maneuverability of the wheeled mobile system. Among various possible configurations, the two-wheel steering and driving systems, which is minimal in structural requirement, is proposed to reduce the complexity in actual design and difficulties in control. The system possesses three or four degrees of freedom depending on the orientations of two wheels, one or two for driving and two for steering, which implies that the system's mobility is always less than three DOF. The proposed system, nonetheless, can exactly emulate characteristics of the omnidirectional motion as long as the planned path is smooth i.e., the curvature changes continuously while velocity is not zero. Efficient kinematic and dynamic control algorithms are proposed for position and orientation control of the proposed wheeled mobile system.

  • PDF

Dynamic Analysis of a Gear Driving System with Time-varying Mesh Stiffness/Damping and Friction (변동물림강성/감쇠와 마찰을 고려한 기어구동계의 동특성 해석)

  • Kim, Woo-Hyung;Jung, Tae-Il;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.224-231
    • /
    • 2006
  • A six-degree-of-freedom dynamic model with time-varying mesh stiffness/damping and friction has been developed for the dynamic analysis of a gear driving system. This model includes a spur gear pair, bearing, friction and prime mover. Using Newton???s method, equations of motion for the gear driving system were derived. Two computer programs are developed to calculate mesh stiffness, transmission error and friction force and analyze the dynamics of the modeled system using a time integration method. The influences of mesh stiffness/damping, bearing, and friction affecting the system were investigated by performing eigenvalue analysis and time response analysis. It is found that the reduction of the maximum peak magnitude by friction is decided according to designing the positions of pitch point and maximum peak in the responses.

  • PDF

A Methodology on System Implementation for Road Monitoring and Management Based on Automated Driving Hazard Levels (위험도 기반 도로 모니터링 및 관리 시스템 구축 방안)

  • Kyuok Kim;Sang Soo Lee;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.299-310
    • /
    • 2022
  • The ability of an automated driving system is based on vehicle sensors, judgment and control algorithms, etc. The safety of automated driving system is highly related to the operational status of the road network and compliant road infrastructure. The safe operation of automated driving necessitates continuous monitoring to determine if the road and traffic conditions are suitable and safe. This paper presents a node and link system to build a road monitoring system by considering the ODD(Operational Design Domain) characteristics. Considering scalability, the design is based on the existing ITS standard node-link system, and a method for expressing the monitoring target as a node and a link is presented. We further present a technique to classify and manage hazard risk into five levels, and a method to utilize node and link information when searching for and controlling the optimal route. Furthermore, we introduce an example of system implementation based on the proposed node and link system for Sejong City.

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

Drowsiness Driving Prevention System using Bone Conduction Device

  • Hahm, SangWoo;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4518-4540
    • /
    • 2019
  • With the development of IT convergence technology, autonomous driving has gradually developed; however, the vehicle is still operated by the driver, who should always be in good health - but sometimes, this is not the case. It is especially dangerous to drive when drowsy, and unable to fully concentrate on driving, such as when taking certain medicines, or through fatigue. Drowsy driving is at least eight times more dangerous than normal driving, and as dangerous as drunk driving. Previous research has looked at technology to detect drowsiness, in order to wake up drivers when necessary, or to safely stop the vehicle. Furthermore, many studies have been conducted to find out when drowsiness occurs. However, it is more desirable for the driver to take sufficient rest during a break, in order to be able to continue to focus and drive. In other words, it is important to maintain a normal state before drowsiness. In this study, we introduce a sound source to increase driver concentration and prevent drowsiness, another that can improve the quality of sleep, and a system that produces these sound sources. The proposed system has a noise reduction effect of about 15 dB. We have confirmed that the proposed sound induces an EEG of the desired form.

Half Bridge Inverter for Single Phase Induction Motor Driving (단상 유도 전동기를 위한 하프브리지 인버터)

  • 이종규;김영삼;원영진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.181-183
    • /
    • 1999
  • This paper is about the design of half-bridge inverter controller with low cost and simple configuration for low power single-phase induction motor driving. The simple controller is composed of MCU and PLD. Also, to limit the overcurrent at initial driving, auxiliary function is added, and stabilizes the system. In order to verify the performance of the proposed methode, we design 500W inverter system, and in result, the response time of the proposed method compared with line voltage driving method is reduced by 200[msec].

  • PDF

Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus (2축 공기압 실린더 구동장치의 위치 동기 제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

A Study on the Optimal Driving by Analysis on EMU Running Result and Simulation (전동열차 주행결과와 시뮬레이션 분석을 통한 최적주행 연구)

  • Kim, Chi-Tae;Kim, Dong-Hwan;Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.129-133
    • /
    • 2012
  • As people are getting concerned to Environment recently, researches on the environmentally-friendly and effective railway system have been conducted in every aspects. Especially as it became known that the pattern of train driving causes the difference in energy consumption, the researches on the train driving to minimize the energy consumption are gaining a lot of interest. The main study showed the optimal driving to minimize energy consumption while driving after analyzing real driving data measured by EMU of Bundang-line real driving, determining the impact on energy consumption due to train driving pattern changes, executing a variety of simulation on real driving patterns by Matlab Simulink and finally driving between stations by given driving times.

Development of a motion system operating software for a driving simulator (차량 시뮬레이터의 운동시스템 구동소프트웨어 개발)

  • 박경균;박일경;조준희;이운성;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • This paper describes the operating software of a motion system developed for a driving simulator, consisting of a six degree of freedom Stewart platform driven hydraulically. The drive logic, consisting of an washout algorithm, inverse kinematic analysis, and a control algorithm, has been developed and applied for creating high fidelity motion cues. The basic environment of the operating software is based on LabVIEW 4.0 and DLL modules compiled by Fortran.

  • PDF