• 제목/요약/키워드: Driving Profile

검색결과 161건 처리시간 0.023초

포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법 (Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System)

  • 엄명환;송신우;박일우
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

제한 주행시간을 만족하는 에너지 효율적인 전기자동차 주행 최적화 기법 (Energy Efficient Electric Vehicle Driving Optimization Method Satisfying Driving Time Constraint)

  • 백돈규
    • 한국산업정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.39-47
    • /
    • 2020
  • 본 논문은 추가 비용 없이 전기자동차(EV) 주행 범위를 확장하기 위해 에너지 효율적인 전기자동차 주행 프로파일을 도출하는 새로운 시스템 수준의 프레임 워크를 소개한다. 이 논문은 먼저 운전 차량에 작용하는 힘과 모터 효율을 고려한 전기차 파워 트레인 모델을 구현한 후, 경로에 의해 정의된 주행 임무에 대한 최소 에너지 주행 프로파일을 도출한다. 이를 위해서 본 프레임워크는 먼저 최적화 문제를 공식화하고, 가중치 계수를 이용한 동적 프로그래밍 알고리즘을 사용하여 에너지 소비와 운전 시간을 모두 최소화하는 주행 프로파일을 도출한다. 본 논문은 주행 시간 제약을 만족시키기 위한 다양한 가중치 계수 도출 방법을 소개한다. 시뮬레이션 결과, 제안 된 스케일링 알고리즘의 연산시간이 이진 검색 알고리즘 및 탐욕 알고리즘보다 각각 34 % 및 50 % 더 작음을 보여준다.

고속도로 종단지형을 고려한 연료 효율적 최적주행전략 모형 개발 (Development of Optimized Driving Model for decreasing Fuel Consumption in the Longitudinal Highway Section)

  • 최지은;배상훈
    • 한국ITS학회 논문지
    • /
    • 제14권6호
    • /
    • pp.14-20
    • /
    • 2015
  • 국토교통부는 2020년까지 수송부문 온실가스 배출량의 감축목표를 34.3%로 설정하였다. 목표달성을 위해 에코드라이빙 교육 및 정보를 제공하고 있으나 배출량 감축효과가 미비하다. 따라서 본 연구는 연료 효율적인 최적주행전략 모형의 개발을 목적으로 하였다. 종단경사도 및 길이가 다양한 도로지형을 생성하고 주행모드를 바탕으로 하는 시나리오별 속도 프로파일을 Comprehensive Modal Emission Model에 적용하여 연료소모량을 산정하였다. 연료소모량이 최소가 되는 시나리오와 속도변화량을 도출하였다. 도출된 시나리오와 속도변화량을 기반으로 최적주행전략 모형을 개발하였다. 개발된 모형을 검증하고자 실차테스트를 수행하여 일반 운전자의 속도 데이터를 수집하였다. 개발된 모형에 의해 생성된 속도 프로파일과 일반운전에 생성된 속도 프로파일을 분석하고 각각 연료소모량을 산정하였다. 최적주행 시 소모된 연료소모량이 일반운전보다 평균 11.8% 감축하는 것으로 분석되었다.

라인 프로파일을 이용한 템플릿 매칭 기반의 운전자 눈 깜박임 검출 방법 (Driver's Eye Blinking Detection Method based on Template Matching using Line Profile)

  • 김영재;신승섭;김광기
    • 한국멀티미디어학회논문지
    • /
    • 제20권6호
    • /
    • pp.873-881
    • /
    • 2017
  • Prevention of drowsy driving is one of the important issues for safe driving. In this study, the algorithm for detection of drowsy driving has been developed. The algorithm was implemented by applying template matching and line profile, which detects eye blink. The accuracy of eye detection and blink detection was $97.45{\pm}3.67%$ and $98.50{\pm}0.92%$, which was resulted from the verification experiment that 21 subjects participated. Consequently, the algorithm is expected to be used to prevent sleep-deprived driving.

듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계 (Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile)

  • 변성광;이동형;최하영
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

차량의 동력전달장치 모델 개발에 관한 연구 (A Study on the Development of the Vehicle Powertrain Model)

  • 김광석
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.17-23
    • /
    • 2011
  • To estimate fuel consumption of a vehicle, a car can be tested on chassis dynamometer. In this case, test causes a lot of time and money. To predict the fuel efficiency of vehicles in the design stage or early stage of development, the development of computer simulation model is necessary. Using simulation to predict the fuel consumption, the driving model which consists of time-velocity profile and time-grade profile is necessary In this study, vehicle model is developed in MatLab/simulink to estimate real driving fuel consumption rate with time-velocity profile, time-shift gear profile and time-grade profile. Vehicle model consists of driver model, engine model, power train model, and so on. On-road vehicle tests to verify the vehicle model are carried out for analyzing the result of simulation and comparing with those of the experiments.

Favorable driving direction of double shield TBM in deep mixed rock strata: Numerical investigations to reduce shield entrapment

  • Wen, Sen;Zhang, Chunshun;Zhang, Ya
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.237-245
    • /
    • 2019
  • In deep mixed rock strata, a double shield TBM (DS-TBM) is easy to be entrapped by a large force during tunneling. In order to reduce the probability of the entrapment, we need to investigate a favorable driving direction, either driving with or against dip, which mainly associates with the angle between the tunneling axis and strike, ${\theta}$, as well as the dip angle of rock strata, ${\alpha}$. We, therefore, establish a 3DEC model to show the changes of displacements and contact forces in mixed rock strata through LDP (longitudinal displacement profile) and LFP (longitudinal contact force profile) curves at four characteristic points on the surrounding rock. This is followed by a series of numerical models to investigate the favorable driving direction. The computational results indicate driving with dip is the favorable tunneling direction to reduce the probability of DS-TBM entrapment, irrespective of ${\theta}$ and ${\alpha}$, which is not in full agreement with the guidelines proposed in RMR. From the favorable driving direction (i.e., driving with dip), the smallest contact force is found when ${\theta}$ is equal to $90^{\circ}$. The present study is therefore beneficial for route selection and construction design in TBM tunneling.

Obtaining the driving scale of turbulence from observations

  • 조정연
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.56.2-56.2
    • /
    • 2017
  • To maintain turbulence in astrophysical fluids, driving is required. Constraining the driving scale of turbulence is important to identify the driving mechanism and also to obtain more accurate turbulence statistics from observations. We discuss how to obtain the driving scale of turbulence from observations. First, we explain the method to obtain the driving scale from the standard deviation of centroid velocity (i.e. the first moment of the line profile). Second, we discuss other techniques to obtain the driving scale.

  • PDF

가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구 (Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test)

  • 김성수;이민호;노경하;김정환
    • 한국분무공학회지
    • /
    • 제28권4호
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

저가형 마이크로프로세서를 위한 연산처리 확장 모션제어 알고리즘 (Motion Control Algorithm Expanding Arithmetic Operation for Low-Cost Microprocessor)

  • 문상찬;김재준;남규민;김병수;이순걸
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1079-1085
    • /
    • 2012
  • For precise motion control, S-curve velocity profile is generally used but it has disadvantage of relatively long calculation time for floating-point arithmetics. In this paper, we present a new generating method for velocity profile to reduce delay time of profile generation so that it overcomes such disadvantage and enhances the efficiency of precise motion control. In this approach, the velocity profile is designed based on the gamma correction expression that is generally used in image processing to obtain a smoother movement without any critical jerk. The proposed velocity profile is designed to support both T-curve and S-curve velocity profile. It can generate precise profile by adding an offset to the velocity profile with decimals under floating point that are not counted during gamma correction arithmetic operation. As a result, the operation time is saved and the efficiency is improved. The proposed method is compared with the existing method that generates velocity profile using ring buffer on a 8-bit low-cost MCU. The result shows that the proposed method has no delay in generating driving profile with good accuracy of each cycle velocity. The significance of the proposed method lies in reduction of the operation time without degrading the motion accuracy. Generated driving signal also shows to verify effectiveness of the proposed method.