• 제목/요약/키워드: Driving Mode Control

검색결과 227건 처리시간 0.032초

장애물 극복이 가능한 구조로봇의 주행모드 변형을 위한 PI-based Feedforward 제어 (PI-based Feedforward Control for Driving Mode Transformation of Rescue Robot capable of Obstacle Overcoming)

  • 정해관;강현석;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.489-495
    • /
    • 2008
  • This paper offers a practical control scheme for driving mode transformation of a rescue robot already developed. The rescue robot, VSTR(Variable Single-Tracked Robot), has two driving modes, so can traverse untidy terrain and overcome obstacles such as stairs easily by use of timely driving mode transformation. Classical PI control scheme was used firstly for driving mode transformation, but stationary phenomenon, which might have a bad effect on the performance in real situation, came into existence. Therefore, we suggest a new controller, PI-based feedforward controller, which should be a good alternative for the problem, and compare it with other nonlinear control scheme.

슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어 (Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller)

  • 장지성;한승훈
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

수밀댐퍼 구동장치의 강인제어에 관한 연구 (Design of a Robust Controller for a Watertight Damper Driving System)

  • 한승훈;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

엔터테인먼트용 로봇차량의 제작과 균형 제어 (Implementation and Balancing Control of a Robotic Vehicle for Entertainment)

  • 김현욱;조성택;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.736-740
    • /
    • 2014
  • This paper presents the driving and balancing control of an entertainment robot vehicle that can carry two persons. The entertainment robot vehicle is built with the purpose of carrying passengers with two wheels. It has two driving modes: a balancing mode with two wheels and a driving mode with three wheels. Three cases of different modes are verified by experimental studies. Firstly, a driving mode is tested with two passengers to check the functionality of the vehicle. Secondly, the balancing control performance is tested. Lastly, the balancing control performance under the disturbance is tested.

고속도로 합류점 주행을 위한 강건 모델 예측 기법 기반 자율주행 차선 변경 알고리즘 개발 (Automated Driving Lane Change Algorithm Based on Robust Model Predictive Control for Merge Situations on Highway Intersections)

  • 채흥석;정용환;민경찬;이명수;이경수
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.575-583
    • /
    • 2017
  • 본 논문에서는 고속도로의 합류지점 상황에서 자율주행을 위한 운전 모드 결정 알고리즘의 개발 및 평가를 진행하였다. 합류 상황을 위한 자율주행 알고리즘 개발에 있어 적절하게 합류를 결정하는 운전 모드 결정이 필수적이다. 운전자 모드는 총 2가지로 차선 유지, 차선 변경(합류)이다. 합류 모드 결정은 주변 차량의 정보 및 합류 차선에 남은 거리를 기반으로 결정된다. 합류 모드 결정 알고리즘에서는 합류 가능 여부를 판단하고 합류가 가능할 때, 안전하고 빠르게 합류하기 위한 최적의 위치를 찾는다. 안전 주행 영역은 주변 차량의 정보 및 주행 모드를 기반으로 정의된다. 안전 주행 영역으로 자율주행 차량을 유지하기 위한 조향각과 종방향 가속도를 얻기 위해 여러 제한 조건이 더해진 강건 모델 예측기법이 사용되었다. 본 논문에서 제안된 알고리즘은 컴퓨터 시뮬레이션을 이용해 검증되었다.

가변트랙형 주행로봇의 장애물 탐지와 주행모드제어 (Obstacle Detection and Driving Mode Control for a Mobile Robot with Variable Single-tracked Mechanism)

  • 최근하;정해관;현경학;곽윤근
    • 한국정밀공학회지
    • /
    • 제25권2호
    • /
    • pp.65-71
    • /
    • 2008
  • In this paper, we propose a new driving mode control algorithm for a mobile robot based on obstacle detection. The robot has a variable geometry single-tracked mechanism, so it can maximize a contact length with ground for the adaptability to off-road and puesue a stable system due to the lower center of gravity. However this robot system embodied passive type according to operator. In this reason, several problems are detected. So, this research presents a new method of obstacle detection using PSD infrared sensors and translates the variable tracks on the best suited driving mode actively. And experimental results about mentioned are presented.

포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법 (Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System)

  • 엄명환;송신우;박일우
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어 (Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors)

  • 남강현;엄상준
    • 제어로봇시스템학회논문지
    • /
    • 제22권11호
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

운송 및 엔터테인먼트용 로봇차량의 바운스 및 주행제어 실험 연구 (Experimental Studies on Bouncing and Driving Control of a Robotic Vehicle for Entertainment and Transportation)

  • 조성택;정슬
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.266-271
    • /
    • 2015
  • 본 논문은 오락과 운송의 목적으로 만들어진 로봇 차량의 주행과 바운싱 제어에 관해 소개한다. 로봇 차량은 2 바퀴로 균형을 유지하며 2명의 탑승자를 태울 수 있도록 만들어 졌다. 즐거움을 극대화하기 위해 균형제어 뿐만 아니라 바운싱 제어까지 구현하였다. 탑승자는 주행모드, 균형모드, 그리고 바운싱 모드를 선택할 수 있다. 균형제어와 바운싱 제어 그리고 주행제어를 실험하여 그 가능성을 확인하였다.