• Title/Summary/Keyword: Driving Gear

Search Result 293, Processing Time 0.021 seconds

Strength and Durability Analysis of the Double Planetary Gears (복합유성기어의 강도 및 내구성 해석)

  • Han, Sung Gil;Shin, Yoo-In;Yoon, Chan Heon;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.28-34
    • /
    • 2014
  • A planetary gear train is more compact and endures greater amounts of transmission power compared to other gear systems. Although planetary gear systems operate in small volumes, they are capable of very high efficiency due to the compact combination of their gears in the planetary gear system. They also have outstanding efficiency of only 3% for power transmission, tantamount to the power loss that occurs in each of the shift stages. Given these advantages, planetary gear systems are used in the driving systems of, which are widely used in automobile transmissions, machine tools, semiconductor equipment, and in other areas in industrial fields. Current structural equipment requires higher efficiency and greater torque levels. According to these needs, we have designed a complex planetary gear system which creates higher levels of torque. In this paper, an evaluation of strength designs for the proposed planetary gear system was conducted to ensure the stability of the gear. In addition, a durability analysis based on Miner's rule was performed using RS B 0095 device.

Rotordynamic Analysis of a Turbo-Chiller with Varying Gear Loadings Part I ; A Driving Motor-Bull Gear Rotor-Bearing System (터보 냉동기의 변동 기어하중을 고려한 로터다이나믹 해석 Part I : 구동 모터-불기어 로터-베어링 시스템)

  • 이안성;정진희
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.593-599
    • /
    • 1999
  • A rotordynamic analysis is performed with a motor-bull gear rotor system supported on two partial bearings, which is intended to drive a high-speed turbo-chiller compressor impeller shaft through its built-in pinion gear. The motor-bull gear rotor system has a rated speed of 3,600 rpm, and is modeled utilizing the finite element method for analysis. As loadings on the bearings due to the gear action are significant in the system considered, each resultant bearing load is calculated statically by considering the generalized forces of the gear action as well as the rotor itself. The two support partial bearings are designed to take their varying loads along with their varying load angles, and they are also analyzed to give their rotordynamic coefficients. Then, a complex rotordynamic analysis of the motor-bull gear rotor-bearing system is carried out to evaluate its whirl natural frequencies and mode shapes and unbalance responses under various loading conditions. Results show that the bearings and entire rotor system are well designed regradless of operating conditions, i.e., loads and operating speeds.

  • PDF

Controller design of heavy load driving system (대부하 구동시스템의 제어기 설계)

  • 윤강섭;안태영;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.730-735
    • /
    • 1992
  • In this study, heavy loads driving servo control systems, which are composed of electro-hydraulic servo-valve, hydraulic motor/cylinder, gear box and link mechanism, are investigated for implemention. To predict the performances of the systems, modelling and simulation with some nonlinearities are carried out. Simulation results are compared with experimental results.

  • PDF

A Study on the Optimum Design of Independent Suspension Final Reduction Gear (특수차량 독립현가형 종감속기의 최적설계에 대한 연구)

  • Jo, Young-Jik;Jeon, Eeon-chan;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • Independent suspension axle and final reduction gear for special-purpose vehicles such as a armored vehicles are almost imported in Germany etc. so, developing them is necessary to save cost. In severe condition (open fields, water surface driving, obstacle pass), special-purpose vehicles must work well. Drop box, axle and final reduction gear performed static analysis. We know that is possible weight reduction. The purpose of this paper is to find out the optimal shape of final reduction gear's case by means of response surface methodology. The response surface method is the statistical method which can be applied to the non-sensitivity based optimization. The response surface which is constructed by the least square method contains only the polynomial terms so that the global maximum and minimum points are easily obtained.

  • PDF

A Study on Performance Improvement of Gear Type Vane Damper in FD Fan - Productivity Increases & Construction Improvement - (FD FAN에서 기어식 베인 댐퍼의 성능개선에 관한 연구 - 생산 및 구조 융합형 기술 -)

  • Jang, Sung-Cheol;Han, Sang-Ho;Kim, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.134-139
    • /
    • 2010
  • In this study, we developed the gear type vane damper replacing the link type through gear design using Finite Element Analysis(FEA). FEA about the pinion and the vane shaft in the boss of gear type damper for quality improvement was accomplished. We analyzed fluid flow according to angular displacement. Catched the problem of the torque and backlash bring to the pinion as structure improvement of the forced draft fan(FD FAN). Finally, we compared the gear driving result with simulation. It is the objective of the present study to identify a nonlinear flow rate control of gear type vane damper and to suggest a damper shape with a linear flow rate control. This study is related to the development of gear type vane damper change link type in forced draft fan.

A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device (4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구)

  • Youm, Kwang Wook;Ham, Seong Hun;Oh, Se Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.

Estimation of Load on Ship's Hydraulic Steering Gear (선박 유압 조타장치 부하의 추정)

  • Ji, S.W.;Oh, J.M.;Jeong, E.S.;Kim, B.K.;Lee, I.Y.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • For testing a newly designed ship's steering gear, a steering gear test bench with a steering gear to be tested and a load generation part should be prepared. The load given to the steering gear has to be pertinent to the load generated in a targeted ship. In this study, the authors suggest a process of estimating the load given to steering gears in ships. At first, a test for measuring the load in the steering gear of a real ship was conducted. Then, a process was developed to compute rudder driving torque and force by using basic equations including some empirical equations on ship's steering. The test results and the computation results on the load in the steering gear were compared, As a result, the process suggested in this study for estimating load in ship's steering gears was verified.

Development of Valve Balance Test Equipment for Power Steering Gear (파워 스티어링 기어의 밸브 밸런스 테스트 장비 개발)

  • Go, S.J.;Park, M.K.;Won, T.H.;Kim, H.S.;Kim, K.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Steering gear is the part of an automobile that change circular movement of steering wheel to lateral movement of rack to change driving direction. This can be classified with manual and power steering gear. Manual steering gear is operated only with human power while power steering gear use oil pressure support. These days power steering gear is more common to almost of the car. Recently a korean company manufactures a speed sensitive power steering which provide variable steering feel depend on the speed of car. The Broens company of Australia produces and exports the test equipments for the manufacture of power steering valves and assemblies to major vehicle manufactures. Some korean companies imported the test equipments from Australia, thus increasing the cost. The purpose of this study is development of the valve balance test equipment to measure the valve torque of the power steering gear. This study designed and manufactured the valve balance test equipment to take hold of the power steering valve using CAE analysis. In order to evaluate the performance of the developed valve balance test equipment, the R&R tests have been conducted.

A Study of the Life Test of Hydraulic Pump Driving Gear Box for the Large Excavator (초대형 굴삭기용 유압펌프 구동 기어박스의 수명시험에 관한 연구)

  • Lee, Yong Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2015
  • Large hydraulic excavator weighted 90 tons used the several pumps installed in parallel to use the hydraulic pump driving gearbox to improve fuel consumption by improving the energy efficiency of the hydraulic system. Gearbox connected to hydraulic pump supply the mechanical output to the high pressure and low pressure pump to be supplied by torque and rotation, which are the mechanical power, through a input shaft connected to large size engine of the excavator. So, gearbox connected to hydraulic pump is same as main artery in the human body and is required long life because it operates the hydraulic pump continuously during operating the engine. This study had used oil contamination analysis method to check the wear characteristics of the gearbox and frequency response characteristic analysis method to check the failure of the teeth failures of gearbox, while the test equipment adopted by the electrical feedback method to reduce the energy consumption was operating for the life assessment, in which the required power was 600 kW input power.