• 제목/요약/키워드: Driving Fluid

검색결과 294건 처리시간 0.035초

피에조 구동형 잉크젯 노즐에서의 미세 액적 형성 특성 (On the Characteristics of the Droplet Formation from an Inkjet Nozzle Driven by a Piezoelectric Actuator)

  • 신평호;성재용;이석종
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.47-52
    • /
    • 2008
  • The present study has focused on the characteristics of droplet formation from an inkjet nozzle driven by a piezoelectric actuator. As an operating fluid, ethylene glycol was used and the physical properties of it such as viscosity, surface tension, contact angle and shear stress were measured. During the experiments, various temperatures and driving voltages are imposed on a capillary tube. These conditions result in a proper drive condition or an overdrive condition. In case of the proper drive condition, an image processing technique is applied to measure the diameter of a single free drop. As a result, the size of droplet is increased when the driving voltage is increased from 160 V to 190 V at 25$^{\circ}C$ In the overdrive condition where temperature or driving voltage becomes higher than the proper drive condition, satellites and the misdirected jets happen.

유체-구조 연성해석을 통한 원주의 와유기 진동 해석 (FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER)

  • 김세훈;안형택;유정수;신현경;권오조;서희선
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine

  • Schmucker, Hannes;Flemming, Felix;Coulson, Stuart
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.342-351
    • /
    • 2010
  • During the operation of a hydro turbine the fluid mechanical pressure loading on the turbine blades provides the driving torque on the turbine shaft. This fluid loading results in a structural load on the component which in turn causes the turbine blade to deflect. Classically, these mechanical stresses and deflections are calculated by means of finite element analysis (FEA) which applies the pressure distribution on the blade surface calculated by computational fluid dynamics (CFD) as a major boundary condition. Such an approach can be seen as a one-way coupled simulation of the fluid structure interaction (FSI) problem. In this analysis the reverse influence of the deformation on the fluid is generally neglected. Especially in axial machines the blade deformation can result in a significant impact on the turbine performance. The present paper analyzes this influence by means of fully two-way coupled FSI simulations of a propeller turbine utilizing two different approaches. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Classic for the structure mechanical simulation. A detailed comparison of the results for various blade stiffness by means of changing Young's Modulus are presented. The influence of the blade deformation on the runner discharge and performance will be discussed and shows for the configuration investigated no significant influence under normal structural conditions. This study also highlights that a two-way coupled fluid structure interaction simulation of a real engineering configuration is still a challenging task for today's commercially available simulation tools.

장거리 벨트 컨베이어의 기동 및 정지시의 동적거동 해석 (Dynamic Analyis of Long Distance Belt Conveyor During Starting and Stopping)

  • 김원진;박태건;이신섭
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.585-593
    • /
    • 1996
  • According to the considerable increase of the length of belt conveyors, the dynamic analysis of systme becomes necessary to consider the variation of tensions and transient motion of components during starting and stopping of conveyor. The mathematical model of system is derived using the lumped parameter method. The input driving force is represented with two functions of time and pulley speed to count the characteristics of motor and fluid coupling. An example system was studied with 14 km in the distance of carrying. At head, it has two drivers and one gravity take-up and at tail ond driver and one power winch take-up. In the example, the transient tensions and responses, calculated using two cases of driving force, are mutually compared in starting mode. Also, the position of maximum tension and the braking force of take-up are obtained in stopping mode.

감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구 (A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper)

  • 이광헌;이춘태;정헌술
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF

동역학 시뮬레이션을 통한 농업부산물 수집기 체결장치의 안전성 분석 (Simulation Study on the Safety of a Fastening Device of Agricultural By-product Collector)

  • 김정훈;황석준;남주석
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.42-49
    • /
    • 2023
  • In this study, the safety of fastening device for the agricultural by-product collector was evaluated according to the driving ground conditions by deriving the stress, static safety factor, and fatigue life using dynamic simulation. A 3D modeling of agricultural by-product collector was carried out, and simulation model was developed by applying the material properties. As a result of dynamic simulation, the magnitude of the maximum stress generated in the fastening device was the highest when driving on the flat off-road, followed by sloped pave-road and flat pave-road. Static safety factor and fatigue life were the highest when driving on the flat pave-road, followed by sloped pave-road and flat off-road. The safety of fastening device was confirmed that static safety factor was more than 1.0 and service life exceeded 9 years in all driving ground conditions.

지게차용 엔진식 드라이브 액슬 수명평가를 위한 가속수명시험 선정 연구 (Accelerated Life Test Selection Study for Life Evaluation of Engine Type Drive Axle for Forklift)

  • 김준영;유영준;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권3호
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, the selection of a reliable accelerated life test code for a 2-ton forklift was accomplished by choosing the driving resistance coefficient failure-free test time based on a 10,000-hour B10 life. The overall life and average equivalent load of the vehicle were then calculated based on actual driving test conditions using the selected driving resistance coefficient. The gear train's accelerated life test code was selected by adjusting the equivalent load to a torque and rotation speed that did not exceed 125%(about 75HP) of the vehicle rated power. The safety of the test standards was validated by conducting an actual accelerated life test utilizing the proposed test method in this study and comparing the test result with the corresponding theoretical value. It is anticipated that the reliability of the accelerated life test in this paper will be enhanced, by incorporating actual driving performance data collected directly from the forklift and adjusting the conditions used in developing the accelerated life test code.

지게차 주행 환경에 따른 드라이브 엑슬 부품의 피로 및 가혹도 분석 (Fatigue and Severity Analysis of Drive Axle Parts According to Forklift Driving Environmet)

  • 유영준;안영철;이광희;박정현;이대엽;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권2호
    • /
    • pp.24-30
    • /
    • 2023
  • This study aimed to analyze the fatigue of forklifts in industrial settings by assessing their stress levels during operation. Strain gauges were affixed to the dynamic components of the forklifts to gather real-time data and enhance the reliability of the analysis. Although monitoring structural loads in harsh testing environments can be challenging, the affixed strain gauges on the dynamic components can provide more precise results and improve the interpretation of data. By creating testing modes that simulate forklift usage environments and performing experiments with selected cargo and driving modes, a comparison of the damage severity of forklift parts under different driving conditions was done. These results can be utilized to forecast the lifespan of forklift parts under extreme driving conditions and assist in the design and optimization of new parts in the future.

지능형 농기계 기술 동향 (Technological Trends of Intelligent Agricultural Machinery)

  • 김환선;공소윤;이중용;임종국;김완수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.80-91
    • /
    • 2023
  • The purpose of this study is to suggest the direction for the development of intelligent agricultural machinery technology in the Republic of Korea. For this purpose, intelligent technology of agricultural machinery was divided into autonomous agricultural machinery and tractor-implement intelligent communication technology. Then, a survey and analysis of a previous study of the Republic of Korea and foreign countries were conducted. GNSS-based autonomous driving technology is still widely used worldwide, and recently, as research on camera and LiDAR-based autonomous driving is actively progressing, autonomous driving technology is becoming more advanced. ISOBUS-based technology is being developed worldwide for intelligent control of tractor-attached implements, and major global agricultural machinery manufacturers are actively applying it to their products. However, although some ISOBUS technologies are being researched in the Republic of Korea, there are no cases of application on agricultural machinery yet. Therefore, to be globally competitive in the agricultural machinery manufacturing industry, there is an urgent need to advance autonomous driving technology and commercialize agricultural machinery using ISOBUS technology.

ERF와 산업용 콘트롤러를 이용한 FHA의 제어특성에 관한 연구 (A Study on the Control Characteristics of FHA by Using ERF and Industrial Controller)

  • 정성철
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.95-100
    • /
    • 2005
  • Making the best use of the features of the electro-rheological(ER) valve, a two-port pressure control valve using ER fluids is proposed and manufactured. The ER-Valve characteristics are evaluated by changing the intensity of the electric field and the number of electrode. In addition, the performance of the plate type ER-Valve is investigated by change the particle concentration of the ER fluid. As only with electrical signal change to the ER-Valve in which ER fluid flowing, ER fluid flow is controlled, so development of simple ER-Valves have been tried. The ER-Valves and pressure drop check method are considered to be applied to the fluid power control system. Using the minかnぉd pressure control valve, a one-link manipulator with FHA in robot system is driven. As a result, it is experimentally confirmed that the pressure control valve using ER fluids is applicable to use in driving actuator. If it applies characteristics of the ER fluids, it will be able to apply in the control system fir the ER Valve which occurs from industrial controller(PLC).